
Lecture notes on the Semantics of Intuitionistic

logic

Andrew W Swan

Abstract

These notes were originally written for the course Intuitionistic Logic
80818 at Carnegie Mellon University, Fall 2021. They are intended for stu-
dents who have already seen some formal logic and aim to give an overview
of the main ideas used in building and using models of intuitionistic theo-
ries, including Kripke models, topological models and realizability models.

Contents

1 Introduction 3
1.1 Why intuitionistic logic? . 3
1.2 Review of intuitionistic first order logic 4

2 Heyting Arithmetic 8
2.1 Equality . 8
2.2 Review of first order Heyting arithmetic 8
2.3 Second order Heyting arithmetic 8
2.4 Heyting arithmetic with finite types 9
2.5 λ-terms in HAω . 12

3 Omniscience Principles 13
3.1 Introducing the omniscience principles 13
3.2 Review of the standard ordering on natural numbers 16
3.3 An explicit version of LPO and the axiom of unique choice . . . 17

4 Heyting Algebras and Topology 18
4.1 Posets and lattices . 18
4.2 Heyting algebras . 20
4.3 Topological spaces . 20

4.3.1 Some basic definitions and examples 21
4.3.2 Neighbourhoods in a topological space 22
4.3.3 Product topologies . 23
4.3.4 Connectedness . 24

4.4 Formal topologies . 25

1

5 Heyting Valued Models 26
5.1 Heyting valued models . 26
5.2 Some simple examples of Heyting valued models 31

5.2.1 Trivial Heyting valued models 31
5.2.2 Sierpiński space . 31

6 Kripke Models and Formal Topological Models 33
6.1 Forcing notation for Heyting valued models 33
6.2 Kripke models . 35
6.3 Formal topological models . 36

7 Heyting Valued Models of Second Order Arithmetic 37
7.1 Standard models . 37
7.2 Some new notation regarding variable assignments 38
7.3 Standard models of second order Heyting arithmetic 38
7.4 Some examples of standard models of HAS 41

7.4.1 The trivial Heyting algebra 41
7.4.2 Sierpiński space . 42

7.5 Cantor space . 42
7.6 The standard model of HAS on N∞ 43

8 Heyting Valued Models of Arithmetic with Finite Types 44
8.1 Partial equivalence relations and H-sets 44
8.2 Singletons in Heyting valued models of HAS and H-sets 45
8.3 Standard Heyting valued models of HAω 49

8.3.1 The domains of the model, extent and equality 49
8.3.2 The application operation 50
8.3.3 Constant symbols . 50

9 Independence of choice and omiscience principles over HAω 51
9.1 The topological model over Cantor space 51
9.2 Independence of countable choice 52

10 Completeness and existence properties 54
10.1 Completeness theorem for Heyting valued models 54
10.2 Existence properties in logic . 56
10.3 Numerical existence property for Heyting arithmetic 57

11 Partial Combinatory Algebras 58
11.1 Some notation and terminology for partial functions 58
11.2 Partial applicative structures . 59
11.3 Partial combinatory algebras . 60
11.4 Two examples of term pcas . 62
11.5 Extended pcas and computable functions 63

2

12 Realizability 66
12.1 Realizability models for intuitionistic logic 66
12.2 Realizability models for HAω . 69

12.2.1 The intensional model . 69
12.2.2 The extensional model . 71

12.3 Standard realizability models for HAS 72

13 Kleene Realizability 73
13.1 Encoding T0 in arithmetic . 73
13.2 The first Kleene algebra . 74
13.3 The Kleene Tree . 76

14 The Second Kleene Algebra and Function Realizability 78
14.1 The second Kleene algebra . 78
14.2 Function realizability . 79

15 Realizability with Truth 79
15.1 An external description . 80
15.2 The internal version . 82

1 Introduction

1.1 Why intuitionistic logic?

In intuitionistic logic we remove an axiom that many would view as fundamental
in logic: the law of excluded middle, the statement φ ∨ ¬φ for all propositions
φ. The original motivation for doing this was philosophical considerations, such
as Brouwer’s philosophy of intuitionism. He believed that mathematics is in-
herently a mental construction. Mathematical statements are true if they are
known to be true and false if they are known to be false. If there is neither a
proof of a statement, nor a proof of its negation (for example, famous open prob-
lems in mathematics such as the Riemann hypothesis and P = NP), then the
statement is neither true nor false, according to intuitionism. Today intuition-
ism in its strictest form is not commonly believed by working mathematicians,
but many still work without the law of excluded middle, in an approach to
mathematics referred to as constructivism. Reasons for working constructively
in mathematics include:

1. Constructive proofs are more appealing since they are more explicit, giving
us a greater understanding of why a result is true.

2. Although many at first (including Brouwer himself) believed constructive
mathematics to be impractical, large parts of mathematics are now known
to work fine in constructive mathematics, as long definitions and state-
ments of theorems are chosen correctly. This started with the work of
Bishop, with later developments by many others.

3

3. Constructive proofs can be combined with powerful techniques in logic to
get stronger versions of a theorem automatically. For example, given a
constructive proof that a function exists, we can show there is a function
with additional properties such as continuity and computability.

It is useful to know that large parts of mathematics can be done construc-
tively, since otherwise studying constructive proofs would have little point. How-
ever, for this course we will mostly encounter the third point, as we study con-
structive proofs from the outside using formal logic.

Although Brouwer himself did not formalise his ideas using logic, intuition-
ism and constructive mathematics have been widely studied from a logical point
of view, to further understand them and make them more precise. This started
with Brouwer’s student Heyting, who developed what we would now call intu-
itionistic logic, as well as some basic theories such as Heyting arithmetic (an
intuitionistic version of Peano arithmetic) that we will see in this course. Today
intuitionistic logic is a rich subject with many aspects. This course is mainly
going to focus on the semantics, i.e. models, of intuitionistic logic. In classical
logic, the term model usually only refers to one thing - the definition appearing
in model theory. This definition would not get us very far in intuitionistic logic,
and even for some quite basic results we need to consider other notions of model.
In this course the notions of model will include

1. Kripke models

2. Heyting valued models

3. realizability models.

As mentioned above, some of these can be used to strengthen proofs, for
example turning a proof of the existence of a function into a construction of
a computable function. Another major theme is going to be independence
and consistency proofs. Consider the axiom of countable choice. This states
that if ∀n ∈ N ∃xφ(n, x) then there is a function f with domain N such that
∀n ∈ N φ(n, f(n)). Cohen famously showed countable choice is independent of
classical set theory ZF. However, there are weaker versions of countable choice
that follow simply from the law of excluded middle. If ∀n ∈ N ∃m ∈ Nφ(n,m)
is true, then we can non constructively prove the existence of a choice function
f , simply by taking f(n) to be the least natural number m such that φ(n,m) is
true. However, this is not provable in intuitionistic logic, and moreover we can
show this using a natural example of a Heyting valued model. We can also show
intuitionistic logic is consistent with many anti-classical axioms that contradict
the law of excluded middle, such as Church’s thesis, which states all functions
N → N are computable.

1.2 Review of intuitionistic first order logic

This course will mostly be about the semantics (i.e. models) of intuitionistic
logic and some simple theories based on intuitionistic logic, mostly variants of

4

Heyting arithmetic. Because of this we won’t need to worry so much about
the technicalities in the definition of proof that would arise in a course in proof
theory. However, it is still useful to fix the definition of what we mean by formal
proof, to refer back to later.

The system we will work with is multisorted intuitionistic natural deduction
with sequent notation. To unpack this a bit more, we will consider a formal
system with the following features,

1. It is intuitionistic - we will not assume the law of excluded middle (the
axiom φ ∨ ¬φ).

2. It is multisorted - we allow for theories where variables can range over
different sorts. For example, we might have one sort for numbers and
another sort for sets of numbers.

3. We will define proofs using natural deduction - most people find this the
easiest and most intuitive form of formal logic.

4. We will use sequent notation to make natural deduction proofs easier to
deal with formally.

Now for the formal definitions.

Definition 1.1. A signature consists of the following data:

1. A set S of sorts

2. A set R of relation symbols

3. For each relation symbol R ∈ R, an arity, which is a finite list of sorts
S1, . . . , Sn ∈ S

4. A set O of operator symbols

5. For each operator symbol O ∈ O, an arity of the operator, which is a
finite list of sorts S1, . . . , Sn ∈ S together with 1 more sort, T ∈ S. We
will write the arity as S1, . . . , Sn → T .

Next we define terms. We start with a countable supply of free variables of
each sort. For now we will write the free variables of sort S ∈ S as xS1 , x

S
2 , x

S
3 ,

Later we will mostly drop the superscript, and indicate the sort of the variable
other ways, for instance by the choice of letter or font.

Definition 1.2. Given a signature and the free variables, we inductively define
terms, and simultaneously assign a sort to every term, as follows.

1. If xSi is a free variable of sort S, then it is also a term of sort S.

2. If O ∈ O is an operator symbol of arity S1, . . . Sn → T and s1, . . . , sn are
terms of sort Si for i = 1, . . . , n, then Os1s2 . . . sn is a term of sort T .

5

Next, we can define formulas.

Definition 1.3. We inductively define the set of formulas as follows.

1. If R ∈ R is a relation symbol, with arity S1, . . . , Sn ∈ S, and s1, . . . , sn are
terms where si has sort Si for i = 1, . . . , n, then Rs1s2 . . . sn is a formula

2. ⊥ is a formula

3. If φ and ψ are formulas, then the following are also formulas,

(a) φ ∧ ψ
(b) φ ∨ ψ
(c) φ→ ψ

4. If φ is a formula and xSi is a free variable, then the following are also
formulas,

(a) ∃xSi φ
(b) ∀xSi φ

We will write substitution as φ[x/t] where x is a free variable of sort S ∈ S,
and t is a term with the same sort S. We can read this as “x is replaced by t in
φ.” Formally, we define substitution as follows.

Definition 1.4. Let x be free variable of sort S and t a term of sort S. We
first define substitution into terms s[x/t] by induction on the definition of term.
Namely,

1. If y is a free variable, we define y[x/t] to be t if x = y, and otherwise y[x/t]
is defined to be y

2. For operator symbolsO ∈ O, we defineOs1 . . . sn[x/t] to beO(s0[x/t]) . . . (sn[x/t]).

We define φ[x/t] for each formula φ again by induction

1. For a relation symbolR ∈ R, we define (Rs1 . . . sn)[x/t] to beR(s1[x/t]) . . . (sn[x/t]).

2. We define (φ□ψ)[x/t] to be φ[x/t]□ψ[x/t] where □ ∈ {∧,→,∨}.

3. We define (∀y φ)[x/t] to be ∀y (φ[x/t]) when y ̸= x and to be ∀y φ other-
wise

4. We define (∃y φ)[x/t] to be ∃y (φ[x/t]) when y ̸= x and to be ∃y φ other-
wise

To help formulate proofs, we will first define sequents.

Definition 1.5. A sequent is a finite set of formulas φ1, . . . , φn, and one more
formula ψ. We will write this data as φ1, . . . , φn ⊢ ψ.

Finally, we can define proofs.

6

Definition 1.6. We define the set of proofs inductively by the following rules.
Every proof proves a sequent, which is given simultaneously in the definition.
We will refer to this as the conclusion of the proof.

To get off the ground, we first need the assumption rule. That is, whenever
φ is an element of the set Γ, we have a proof

Γ ⊢ φ

We follow a general pattern that each logical connective has both introduc-
tion and elimination rules.

First the rules for conjunction:

Γ ⊢ φ Γ ⊢ ψ
Γ ⊢ φ ∧ ψ

∧ I
Γ ⊢ φ ∧ ψ
Γ ⊢ φ

∧ El

Γ ⊢ φ ∧ ψ
Γ ⊢ ψ

∧ Er

Disjunction:

Γ ⊢ φ
Γ ⊢ φ ∨ ψ

∨ Il
Γ ⊢ ψ

Γ ⊢ φ ∨ ψ
∨ Ir

Γ ⊢ φ ∨ ψ Γ, φ ⊢ χ Γ, ψ ⊢ χ
Γ ⊢ χ

∨ E

Implication:

Γ, φ ⊢ ψ
Γ ⊢ φ→ ψ

→ I
Γ ⊢ φ→ ψ Γ ⊢ φ

Γ ⊢ ψ
→ E

Now the rules for quantifiers, for all and exists. In both cases we assume x
and y are free variables of the same sort, S ∈ S, that t is a term of sort S. We
also need to assume several technical conditions regarding free variables. Firstly,
we need that the substitution φ[x/t] “avoids free variable capture.” That is, any
occurrences of free variables in t do not become bound variables in φ[x/t]. For
∀I we need that x does not occur free in any formula of Γ, and for ∃E we need
that x is not free in ψ. Finally, for both ∀I and ∃E, we need that y is not free
in φ unless y = x

Γ ⊢ φ
Γ ⊢ ∀y φ[x/y]

∀I
Γ ⊢ ∀xφ
Γ ⊢ φ[x/t]

∀E

Γ ⊢ φ[x/t]
Γ ⊢ ∃xφ

∃I
Γ ⊢ ∃y φ[x/y] Γ, φ ⊢ ψ

Γ ⊢ ψ
∃E

Finally, we consider ⊥, which only has an elimination rule, often referred to
as ex falso sequitur quodlibet or just ex falso.

Γ ⊢ ⊥
Γ ⊢ φ

⊥E

We say a sequent Γ ⊢ φ is provable if it is the conclusion of some proof. We
say a formula φ is provable if the sequent ⊢ φ is provable.

Definition 1.7. A theory over a given signature is a set T of formulas for that
signature. We will refer to the elements of T as the axioms of the theory.

We write T ⊢ φ to mean that there is a finite set Γ ⊆ T such that Γ ⊢ φ,
and say φ is a theorem of T .

7

2 Heyting Arithmetic

2.1 Equality

The theories we will consider will also have equality. For this we add a relation
symbol =S of arity S, S for every sort S. We then add the following axioms
whenever x is a free variable of sort S and s and t are terms of sort S. The
axiom scheme is only for atomic formulas φ, i.e. those of the form Rt1 . . . tn for
a relation symbol R, but holds without loss of generality for all formulas.

Γ ⊢ x =S x
Γ ⊢ s = t Γ ⊢ φ[x/s]

Γ ⊢ φ[x/t]

2.2 Review of first order Heyting arithmetic

The first formal theory we will see is (first order) Heyting arithmetic, HA.
This is one of the most basic theories where we can formalise some real parts
of mathematics. The signature for HA has a single sort, which we think of as
the set of natural numbers. It has a nullary operator 0, a unary operator S,
two binary operators + and × and equality. We use infix notation for + and
×. That is, we write n +m and n ×m rather than +nm and ×nm to match
the usual notation in mathematics.

The axioms of HA are those for equality and as follows.

1. ¬Sx = 0

2. Sx = Sy → x = y

3. x+ 0 = 0

4. x+ (Sy) = S(x+ y)

5. x× 0 = x

6. x× (Sy) = (x× y) + x

7. (φ[x/0] ∧ ∀x (φ→ φ[x/S(x)])) → ∀xφ for each formula φ (induction)

Although first order Heyting arithmetic is a solid base to work from, it is
limited in the sense that we can only directly talk about numbers. However,
many of the axioms that we will consider are most naturally stated in terms of
functions or sets. We will therefore define two “higher order” extensions of HA
where we can reason about functions or sets in addition to numbers.

2.3 Second order Heyting arithmetic

The first extension we will consider is second order Heyting arithmetic, which
we abbreviate to HAS. The signature of HAS has two sorts: one for numbers,
N and one for sets of numbers, S. We write variables of sort N using lower case
letters, and variables of sort S as upper case.

8

It has equality relations for both numbers and sets and a relation symbol
∈. The arity of ∈ is N,S. We write ∈nX using infix notation (i.e. as n ∈ X)
to match the usual notation for set membership. Finally, HAS has the same
operator symbols 0, S,+,× as for HA.

The axioms of HAS include those of HA together with three more: com-
prehension, extensionality and second order induction.

Comprehension is an axiom scheme, which asserts for each formula φ the
following:

∃X ∀n n ∈ X ↔ φ

Extensionality is the following axiom:

∀X,Y (∀nn ∈ X ↔ n ∈ Y) → (X = Y)

Finally, second order induction is the axiom below.

∀X (0 ∈ X ∧ ∀n (n ∈ X → Sn ∈ X)) → ∀nn ∈ X

Note that second order induction and comprehension together imply the first
order induction scheme, so we can drop first order induction from the definition
without changing the set of theorems.

The richer language of HAS allows us to naturally state axioms that would
be clumsy or even impossible to state in HA. For example, we can see our first
example of anti-classical axioms, i.e. axioms that are provably false in classical
logic. These are the uniformity principle (UP) and unzerlegbarkeit (UZ).

UP ∀X ∃nφ → ∃n ∀X φ
UZ ∀X (φ ∨ ¬φ) → (∀X φ ∨ ∀X ¬φ)

We can see that UP implies UZ, and that UZ contradicts the law of excluded
middle (for example by taking φ to be ∀nn /∈ X). However, we will see later in
the course that UP holds in realizability models of HAS, and so the theory is
consistent.

2.4 Heyting arithmetic with finite types

The first extension of HA we are going to consider is Heyting arithmetic with
finite types, which we abbreviate to HAω. Finite types allow us to also reason
about functions. This includes functions that take a number as input and return
a number as output. However, it goes much further - we can also have functions
that take functions as input, and functions that take those as input, and so
forth. We formalise this idea by first defining the set of finite type symbols as
follows.

Definition 2.1. The set of finite type symbols is inductively generated by the
following conditions:

1. N is a finite type symbol (the “type of numbers”)

9

2. If σ and τ are type symbols, then so is σ× τ (the “product type” of σ and
τ)

3. If σ and τ are type symbols, then so is σ → τ (the “type of functions from
σ to τ”)

We take the set of sorts of HAω to be the finite type symbols.
Since we are thinking of σ → τ as the sort of functions from σ to τ we should

have some way to take an element of σ → τ and an element of σ and return
an element of τ by “function application.” We do this by simply adding for all
finite types σ and τ an operator symbol Apσ,τ of arity (σ → τ), σ → τ . We will
usually omit Ap when we write down terms of HAω. That is, for terms t, s of
sorts σ → τ and σ we will write Apσ,τ ts simply as ts. When we have a series
of function applications in a row, we follow a further notational convention of
dropping parentheses according to “left associativity.” Namely, for three terms
r, s, t, we write rst to mean (rs)t, which is in turn notational shorthand for
Ap(Ap rs)t.

Since we are thinking of σ × τ as the product of σ and τ we should have
some way to create new elements of σ× τ by “pairing together an element of σ
and an element of τ” and some way to take an element of σ × τ and “project
out” the component in σ and the component in τ . Again this is achieved by
simply adding operator symbols. However, now we have Ap we can add them
as constant symbols (i.e. 0-ary operator symbols) of the appropriate function
type. Namely, we add a constant pσ,τ of sort σ → (τ → (σ × τ)), a constant
pσ,τ
0 of sort σ× τ → σ, and a constant pσ,τ

1 of sort σ× τ → τ . In order for these
constants to behave as described we will need to add the axioms below:

p0(pxy) = x

p1(pxy) = y

p(p0z)(p1z) = z

We also add some constant symbols for generating new elements of a function
sort. Firstly given an element of σ, we should get functions “constantly equal
to that element.” We implement this with a constant symbol kσ,τ of sort σ →
(τ → σ). For this to behave as expected, we add the axiom below.

kxy = x

We also want a way to compose two functions. It turns out that it’s useful
to have something a bit stronger that we can think of as “composition with a
parameter.” For this we add a constant symbol sρ,σ,τ of sort (ρ→ (σ → τ)) →
((ρ→ σ) → (ρ→ τ)), satisfying the axiom below:

sxyz = xz(yz)

Finally, we have one more constant rσ, the recursor. One way to think about
this is that we might want a way to “iterate” a function n times given a number

10

n. However, like with s it turns out that it’s more useful to have a stronger
version that takes a parameter as input. The sort of rσ is σ → ((σ → (N →
σ)) → (N → σ)) and it satisfies the axioms below.

rxy0 = x

rxy(Sz) = y(rxyz)z

We also add an equality relation for each sort, and the usual equality axioms.
It also has the usual induction axiom scheme from HA.

Putting this all together we can formally define HAω as follows.

Definition 2.2. Heyting arithmetic with finite types, HAω is the theory defined
as follows.

The set of sorts is the set of finite type symbols.
The set of operator symbols is an operator symbol Apσ,τ of arity (σ →

τ), σ → τ , for all finite types σ and τ together with the following constant
symbols for all types σ, τ, ρ.

Constant symbol Sort
0 N
S N → N

pσ,τ σ → (τ → (σ × τ))
pσ,τ
0 σ × τ → σ

pσ,τ
1 σ × τ → τ

kσ,τ σ → (τ → σ)
sρ,σ,τ (ρ→ (σ → τ)) → ((ρ→ σ) → (ρ→ τ))
rσ σ → ((σ → (N → σ)) → (N → σ))

The only relation symbols are equality relations for each sort.
Firstly, we have the axioms for equality. In the language of HAω, this

amounts to the following axioms.

x = x x = y → y = x x = y ∧ y = z → x = z
y = z → Apxy = Apxz x = y → Apxz = Ap yz

Next, we have the formulas below, where we are following the conventions of
writing Ap ts as ts for terms t and s, and taking application to be left associative.

p0(pxy) = x p1(pxy) = y p(p0z)(p1z) = z
kxy = x sxyz = xz(yz)
rxy0 = x rxy(Sz) = y(rxyz)z

Sx = Sy → x = y ¬0 = Sx

Finally, HAω has the usual induction scheme from HA. That is, for each
formula φ in the language of HAω, we have the following axiom.

(φ[x/0] ∧ ∀x (φ→ φ[x/S(x)])) → ∀xφ

11

Although HAω seems like a quite elaborate system, it is in some ways easier
to deal with than HAS. We will see for example, that realizability models of
HAω are in a certain sense better behaved than those of of HAS. However, for
this course, the main advantage of HAω over HAS is that many of the axioms
we are going to consider are stated in terms of functions. Although it is possible
to implement functions as sets, using their graphs, it is more natural to just use
a system that has a good notion of function already built in.

For example, we can now formulate the axiom of choice, a well known axiom
usually viewed as uncontroversial today, but with an important place in the
history and philosophy of mathematics. In HAω it is most natural to not view
it as a single axiom, but instead for all finite types σ and τ we have a separate
axiom scheme ACσ,τ defined as the following, for each formula φ.

∀xσ ∃yτ φ → ∃fσ→τ ∀xσ φ[y/fx]

We are going to see, for example,

1. using topological models, even the weakest version ACN,N is independent
of HAω

2. ACN,N and ACN→N,N hold in certain realizability models and so are
consistent with some anti-classical axioms.

We will also consider another axiom scheme, function extensionality, which
is the following statement for all finite types σ and τ .

∀fσ→τ ∀gσ→τ (∀xσ fx =τ gx) → f =σ→τ g

This is less often seen outside logic, since it usually viewed as obvious, and can
be proved in set theory, when using the standard implementation of functions as
graphs. However, it is often considered by philosophers of mathematics since it
concerns the question of how we know when two objects (in this case functions)
are equal to each other. One of the ideas we will see in this course is that
although the axiom of choice is often seen as a non constructive axiom, this is
in a certain sense only true when it is combined with function extensionality.

2.5 λ-terms in HAω

It might seem at first that HAω is quite limited in what functions you can
construct using the axioms. However, s and k turn out to be very powerful.

We first note that we can derive an “identity” term:

Definition 2.3. For each finite type, σ, we write iσ for the closed term of HAω

defined as sσ,(σ→σ),σkσ,(σ→σ)kσ,σ.

Proposition 2.4. In HAω we can prove ix = x.

12

Proof. By applying the axiom for s followed by the axiom for k we get the
following equations:

ix := skkx

= kx(kx)

= x

Using s, k and i we can then show the powerful λ-abstraction lemma, that
can be used to construct any function that can be written down as a term:

Lemma 2.5. Let t be a term of HAω of sort σ with a free variable x of sort
τ . Then there is a term λx.t of sort τ → σ satisfying the equation

(λx.t)y = t[x/y]

Proof. We construct (λx.t) by induction on the definition of terms.
If t is the free variable x, we take (λx.t) to be iσ, and it is clear this satisfies

the lemma. (Note that in this case we have σ = τ .)
If t is a constant c or free variable other than x, say y, (necessarily of sort

σ) then we take (λx.t) to be kτ,σc or kτ,σy respectively. We again note that it
is clear this satisfies the lemma, by the axiom for k.

Finally, if t is of the form rs for a term r of sort ρ → σ and a term s of
sort ρ, then we take λx.t to be sτ,ρ,σ(λx.r)(λx.s). We check that this works as
follows.

(λx.t)y := s(λx.r)(λx.s)y

= ((λx.r)y)((λx.s)y) axiom for s

= r[x/y] s[x/y] inductive hypothesis

= (rs)[x/y]

3 Omniscience Principles

3.1 Introducing the omniscience principles

In HAS and HAω we now have formal languages where we can talk about
mathematical statements that constructive mathematicians might be interested
in. In this section we will see some important examples known as omniscience
principles. These are used by constructive mathematicians to provide prototyp-
ical examples of nonconstructive statements. They are often used to illustrate to
classical mathematicians the kind of statement that is not allowed when working
constructively. They are also a useful tool for showing that something is not
provable constructively: if we can use a statement φ to prove an omniscience

13

principle, then φ must also be non constructive. However, for this argument to
really work, we first need to show that the omniscience principles are not prov-
able in the formal theories we are working in. By having a range of different
principles, we can classify mathematical statements by “how non constructive”
they are. This is one of the key ideas of a field known as constructive reverse
mathematics.

Each omniscience principle has a universal quantifier ranging over all bi-
nary sequences, that is, functions from N to 2. When we are working in
HAω we implement this by viewing ∀f ∈ 2N φ as notational shorthand for
∀fN→N ((∀n fn = 0 ∨ fn = 1) → φ). We first consider the strongest omni-
science principle, the limited principle of omniscience.

Definition 3.1. The limited principle of omniscience (LPO) is the following
statement:

∀f ∈ 2N (∀n f(n) = 0) ∨ (∃n f(n) = 1)

We first observe that LPO is easily provable in classical mathematics:

Proposition 3.2. The law of excluded middle implies LPO.

Proof. Let f be any binary sequence. By the law of excluded middle we know
∃n f(n) = 1 is either true or false. If it is true, then we are done. Suppose then
that it is false. We need to show ∀n f(n) = 0. For each natural number n, we
know that f(n) = 0 or f(n) = 1 (exercise!). However, if we had f(n) = 1, this
would contradict ¬(∃n f(n) = 1). Hence we must have f(n) = 0. But we can
now deduce ∀n f(n) = 0, as we needed.

The intuition for why LPO is not constructively acceptable is that in order to
know whether the sequence f contains a 1, we need to look at the entire sequence
at once. We cannot tell whether or not there exists n such that f(n) = 1 by
only looking at a finite portion of the sequence, whether that is the first five
values, the first one million values, or first Graham’s number values or higher.
If we ever find a number n such that f(n) = 1, then we know for sure that
∃n f(n) = 1, but if f(n) = 0 for every value of n we have checked so far, then
we have no way of knowing whether this will continue to be the case forever, or
if we will find an n with f(n) = 1 sometime in the future.

We can also motivate the idea by thinking about physical measurements.
As we improve our equipment and carry out more experiments we can know
physical quantities with greater and greater precision, but we will never reach
absolute precision. For example, if we are given two platinum bars, we will
eventually find out if they have different lengths, but if they have the same
length we will never know for sure. Hence, there is no way in general to decide
which of the two cases we are in.

Finally, we can understand this idea through computability. Given a com-
puter program that outputs the numbers 0 and 1, we have no way to decide, in
general whether it will output 0 forever, or whether it will eventually output 1
given enough time on an ideal computer. We will later make this last intuition
precise using realizability.

14

The remaining omniscience principles are the weak limited principle of om-
niscience, the lesser limited principle of omniscience and Markov’s principle.

Definition 3.3. The weak limited principle of omniscience (WLPO) is the
following statement.

∀f ∈ 2N (∀n f(n) = 0) ∨ ¬(∀n f(n) = 0)

Definition 3.4. Markov’s principle (MP) is the following statement.

∀f ∈ 2N ¬(∀n f(n) = 0) → ∃n f(n) = 1

Markov’s principle is not always included as an omniscience principle, and
many constructive mathematicians view it as a perfectly reasonable axiom to
use in constructive proofs. For example, it is viewed as acceptable according to
the philosophy of recursive or “Russian” constructive mathematics. The idea
is that existential quantifiers need to be justified by computable functions. In
the case of Markov’s principle, we imagine the binary sequence as a computer
program outputting a sequence of 0’s and 1’s as it is given different inputs. If
it is false that the program will always output 0, then we can write a program
to find a number n such that the program outputs 1 given input n - we simply
keep running the original program on higher and higher input values until it
returns 1, and then return the input value where this happened.

Note however that Markov’s principle is exactly what we need to get from
WLPO to LPO. More precisely, we have the following proposition.

Proposition 3.5. LPO is equivalent to the conjunction of WLPO and MP.

Proof. There is a short proof in intuitionistic natural deduction that ∃n f(n) =
1 implies ¬(∀n f(n) = 0). From this it is clear that LPO implies WLPO.
Similarly, given Markov’s principle, we also have the converse statement, that
¬(∀n f(n) = 0) implies ∃n f(n) = 1, and so we also have that WLPO and MP
together imply LPO.

We just need to check that LPO implies MP, but this is again straightfor-
ward: if ∃n f(n) = 1, then we are done, and if ∀n f(n) = 0, we can apply ex
falso together with the assumption ¬(∀n f(n) = 0) to deduce ∃n f(n) = 1.

Definition 3.6. The lesser limited principle of omniscience (LLPO) is the
following statement.

∀f ∈ 2N ∀n,m ((f(n) = 1 ∧ f(m) = 1) → n = m) −→
(∀n f(2n) = 0) ∨ (∀n f(2n+ 1) = 0)

Most people find lesser limited principle of omniscience to be the least in-
tuitive of the omniscience principles. To explain it a bit more, the clause
∀n,m ((f(n) = 1 ∧ f(m) = 1) → n = m) says that f has “at most one
1.” That is, f(n) is equal to 0 for almost all n. It could be equal to 0 for all
n, for example. However, we also allow for the possibility that f(n) is equal to

15

1 for some n. In this case we know that f(m) is equal to 0 whenever m ̸= n.
The statement ∀n f(2n) = 0 is telling us that if f(n) = 1, then n must be odd.
Similarly, ∀n f(2n + 1) = 0 tells us that if f(n) = 1, then n must be even. So
LLPO is telling us that even if we don’t know whether there is an n such that
f(n) = 1, we can say either “if there is such an n it is odd” or “if there is such
an n it is even.”

Proposition 3.7. The weak limited principle of omniscience implies the lesser
limited principle of omniscience.

Proof. Let f be a binary sequence with at most one 1. We apply WLPO to
the sequence f ′ defined by f ′(n) := f(2n). If we have ∀n f ′(n) = 0, then we are
done, since f(2n) = 0 for all n.

Now suppose that we have ¬(∀n f ′(n) = 0). We will show that for all n, we
have f(2n+1) = 0. First recall that we know for each n that either f(2n+1) = 0
or f(2n+1) = 1. If we had f(2n+1) = 1, then it would imply that f(2m) = 0
for all numbers m, since we have 2m ̸= 2n + 1 for all m. However, this would
contradict ¬(∀n f ′(n) = 0). Hence we have f(2n+1) = 0, and since this applies
for all numbers n, we are done.

Although LLPO is usually seen as not acceptable in constructive mathe-
matics, in settings where we do not have countable choice it can be surprisingly
harmless. A kind of realizability called Lifschitz realizability can be used to
show that LLPO is consistent with Church’s thesis (an anti classical axiom
that says “all functions N → N are computable”).

3.2 Review of the standard ordering on natural numbers

In order to help formalise some ideas we briefly review the standard ordering
on natural numbers.

Definition 3.8. We write x < y as shorthand for the formula ∃z y = x+ Sz

The following standard properties of < can be proved in HA. However, for
this course we will omit the proofs.

Proposition 3.9. The binary relation x < y has the following properties.

1. ¬(x < x) (irreflexivity)

2. x < y ∧ y < z → x < z (transitivity)

3. x < y ∨ y < x ∨ x = y (trichotomy)

4. ¬(x < 0)

5. x < Sy ↔ (x = y ∨ x < y)

We also review some more standard notation. First of all, we write x ≤ y to
mean ∃z y = x + z. This also satisfies a list of properties that we will assume
without proof (but can be proved in HA).

16

Proposition 3.10. The binary relation x ≤ y has the following properties.

1. x ≤ x (reflexivity)

2. x ≤ y ∧ y ≤ z → x ≤ z (transitivity)

3. x ≤ y ∧ y ≤ x → x = y (anti-symmetry)

4. x ≤ y ∨ y ≤ x (linearity)

5. x ≤ y ↔ x = y ∨ x < y

We will sometimes use the notational convention of “bounded quantifiers.”
Namely, we do the following:

1. We write ∀x < y φ to mean ∀x (x < y → φ).

2. We write ∃x < y φ to mean ∃x (x < y ∧ φ)

3. We write ∀x ≤ y φ to mean ∀x (x ≤ y → φ).

4. We write ∃x ≤ y φ to mean ∃x (x ≤ y ∧ φ)

Definition 3.11. Suppose we are given a formula φ(x). We say n is the least
number satisfying φ if the following holds:

φ(n) ∧ ∀x (φ(x) → n ≤ x)

Note that by the propositions above (in particular trichotomy), this is equiv-
alent to the following:

φ(n) ∧ ∀x < n¬φ(x)

We justify saying the least number by the fact that if n and m both have
this property, then m ≤ n and n ≤ m, and so m = n.

3.3 An explicit version of LPO and the axiom of unique
choice

For each omniscience principle, we can also define an “explicit” version where
we have a function that “witnesses” the truth of the omniscience principle.

For example, for LPO, we define this as follows.

Definition 3.12. The explicit limited principle of omniscience states that there
is a function F : 2N → (2 × N) with the following property. For every binary
sequence f , exactly one of the following two conditions applies:

1. p0 F (f) = 0 and ∀n f(n) = 0

2. p0 F (f) = 1 and f(p1 F (f)) = 1

17

Since we don’t have a sort for 2 in HAω, we note that we can alternatively
define F on all functions N → N and ignore those that are not binary sequences.
Namely, we can formalise explicit LPO in HAω as the following statement:

∃FN→N,N×N ∀fN→N (∀n fn = 0 ∨ fn = 1) →
(p0(Ff) = 0 ∧ ∀n fn = 0) ∨ (p0(Ff) = 1 ∧ f(p1(Ff)) = 1)

We can easily see that explicit LPO implies LPO. For the converse we
sometimes (if working in HAω, for example) need an additional axiom, the
axiom of unique choice.

We first introduce some notation.

Definition 3.13. We write ∃!xφ(x) as notation for the following statement.

∃x (φ(x) ∧ ∀y φ(y) → x = y)

We say “there exists a unique x satisfying φ.”

Definition 3.14. Given sorts σ and τ axiom of unique choice, ACσ,τ
! is the

following statement for each formula φ.

∀xσ ∃!yτ φ(x, y) → ∃fσ→τ ∀xσ φ(x, fx)

Theorem 3.15. Assuming LPO and the axiom of unique choice, we can prove
explicit LPO.

Proof. We will just give an informal proof in constructive mathematics. Exer-
cise: Think about how you would formalise this in HAω.

We are going to construct F : (N → 2) → (2× N) using unique choice.
We define φ(f, x) to be following statement: Either p0x = 0, p1x = 0, and

∀n f(n) = 0 or p0x = 1 and p1x is the least number n such that f(n) = 1.
We first check existence of x. By LPO, we know that either ∀n f(n) = 0 or

∃n f(n) = 1. In the former case we can take x = p00. In the latter case, we can
in fact deduce there is a least n such that f(n) = 1 (exercise!), and then take x
to be p1n.

We now need to check uniqueness. Suppose we have x and y such that φ(f, x)
and φ(f, y) are both true. Note that we cannot have both ∀n f(n) = 0 and
∃n f(n) = 1 since these would contradict each other. It follows that p0x = p0y.
To show the p1x = p1y, we split into the two cases ∀n f(n) = 0 and ∃n f(n) = 1.
In the former case we have p1x = 0 = p1y. In the latter case we recall that the
least number satisfying any condition is unique, and so we also have p1x = p1y
in that case, as we needed.

4 Heyting Algebras and Topology

4.1 Posets and lattices

We first recall some basic theory about posets.

18

Definition 4.1. A poset is a set P , together with a binary relation ≤ satisfying
the following axioms.

1. x ≤ x (reflexivity)

2. x ≤ y ∧ y ≤ z → x ≤ z (transitivity)

3. x ≤ y ∧ y ≤ x → x = y (anti-symmetry)

We will sometimes write x ≤ y as y ≥ x.

Definition 4.2. The top or greatest element of a poset P is ⊤ ∈ P such that
for all x ∈ P , x ≤ ⊤.

The bottom or least element of a poset P is ⊥ ∈ P such that for all x ∈ P ,
⊥ ≤ x.

Definition 4.3. Let S be a set of elements of a poset P . We say z is the least
upper bound or join of S if

1. for all x ∈ S, x ≤ z (z is an upper bound)

2. if y ∈ P is such that for all x in S x ≤ y, then z ≤ y (any other upper
bound is greater)

Note that any set has at most one join. If it exists, we write it as
∨
S. Given a

two element set {x, y}, we write
∨
{x, y} as x ∨ y.

We similarly define the greatest lower bound or meet of S as an element z
such that

1. for all x ∈ S, z ≤ x

2. if y ∈ P is such that for all x in S z ≤ x, then y ≤ z.

The meet of a set is also unique, and when it exists we write it as
∧
S, and for

two element sets {x, y}, we write
∧
{x, y} as x ∧ y.

Definition 4.4. We say a poset P is complete if for every set S ⊆ P ,
∨
S and∧

S both exist.

Proposition 4.5. A poset P is complete if and only if it has all joins (or all
meets).

Proof. Let S be a set. We want to construct the greatest lower bound of S.
Define L := {x ∈ P | ∀y ∈ S x ≤ y} the set of all lower bounds of S. We claim∨
L is the greatest lower bound of S. For each y ∈ S, we know that for every

x in L, x ≤ y. It follows that
∨
L ≤ y. By applying this to each y ∈ S we see∨

L is a lower bound for S and it is clear it is the greatest one (since L contains
every other lower bound).

Definition 4.6. A lattice is a poset P with least and greatest elements ⊥ and
⊤, and any two elements x, y ∈ P have a meet x ∧ y and a join x ∨ y.

19

Example 4.7. If P is any collection of sets, then it has a canonical ordering
given by x ≤ y whenever x ⊆ y. If P is closed under binary intersection x ∩ y
and union x ∪ y, then (P,⊆) is a lattice.

It is possible to recover the poset relation on a lattice from the operations ∧
and ∨. Because of this, we can also think of lattices as algebraic structures (i.e.
sets with operations satisfying equations).

4.2 Heyting algebras

To motivate Heyting algebras, we first consider an important example, the
Lindenbaum-Tarski algebra of an intuitionistic theory.

Let T be a theory over some signature. We define an equivalence relation
on formulas by φ ∼ ψ when T ⊢ φ ↔ ψ. Let P be the quotient of the set of
formulas by ∼. Note that we have a canonical ordering on P : we say [φ] ≤ [ψ]
if T ⊢ φ→ ψ, and note that this is preserved by the equivalence relation.

We see that P is a lattice, and moreover each part of the lattice structure
corresponds naturally to logical connectives. For example [⊥] ≤ [φ] for all
formulas φ, by ex falso. Similarly [⊤] is the greatest element of the lattice.
We can show that [φ ∨ ψ] is greater than [φ] and [ψ] by the ∨ introduction
rule, and the ∨ elimination rule precisely tells us that any other upper bound
is greater than [φ ∨ ψ]. Similarly we can use conjunction to construct meets in
the Lindenbaum-Tarski algebra.

However, there is one logical connective that does not appear as part of
the lattice structure, namely implication, →. As before, we can translate the
introduction and elimination rules into properties of the order structure. For
all formulas φ, ψ and χ, we can use implication introduction to show that if
[χ ∧ φ] ≤ [ψ], then [χ] ≤ [φ → ψ]. Using introduction elimination, we can also
show the converse: if [χ] ≤ [φ→ ψ], then [χ ∧ φ] ≤ [ψ].

We can see Heyting algebras as posets that behave similar to Lindenbaum-
Tarski algebras. We can think of the elements of a Heyting algebra as “truth
values.” We will use them to define certain models (Heyting valued models) of
theories in intuitionistic logic. Formally, we define them as follows.

Definition 4.8. A Heyting algebra is a lattice (P,⊤,⊥,∧,∨) together with a
binary operation →, implication, satisfying the condition below.

z ≤ x→ y if and only if z ∧ x ≤ y

4.3 Topological spaces

For this course, our main source of examples of Heyting algebras are going to
be topological spaces. From the point of view of Heyting algebras, we can think
of topological spaces as concrete examples of Heyting algebras, whose elements
are all subsets of a fixed set.

The original motivation for topological spaces is to model “spaces” that
appear in mathematics, such a spheres or 3-dimensional space.

20

Another idea that will be important in this course is the notion of morphism
between topological spaces, continuous functions.

4.3.1 Some basic definitions and examples

Definition 4.9. Let X be a set. A topology on X is a collection O of subsets
of X, satisfying the following conditions.

1. X and ∅ are elements of O.

2. If U and V are elements of O, their intersection U ∩ V also belongs to O.

3. If S ⊆ O is a set of elements of O, then their union
⋃
S also belongs to

O.

We refer to the elements of O as open sets, and the elements of X as points.
We say a set X together with a topology is a topological space.

Example 4.10. If X is any set, then we can define a topology by taking O to
be the collection of all subsets of X. This is referred to as the discrete topology
on X.

We can also define a topology by taking O to have just two elements, ∅ and
X. This is referred to as the indiscrete topology.

Example 4.11. We define a topology on the set with two elements 2 := {0, 1}
as the set of subsets {∅, {0}, {0, 1}}. This topological space is referred to as
Sierpiński space, S.

Example 4.12. We define a topology on the set with three elements I =
{0, 1, 2} as the set of subsets {∅, {0, 1}, {1}, {1, 2}, {0, 1, 2}}. We will refer to
this space as the abstract interval, or just the interval.

Example 4.13. If (Q,≤) is any poset, we can define a topology on Q as follows.
A set U ⊆ Q is upwards closed or an upset if whenever x ∈ U and x ≤ y, we
have y ∈ U . The set of all upsets defines a topology on Q referred to as the
upset or Alexandrov topology on the poset.

Example 4.14. If (X,O) is a topological space, and Y is a subset of X, then
we can also define a topology on Y as follows. We say a set U ⊆ Y is open if
for some open set V of X, we have U = V ∩Y . We refer to this as the subspace
topology on Y .

Definition 4.15. Let (X,O) be a topological space, and Y ⊂ X any subset.
We define the interior of Y , Y o to be the union of all open sets U such that
U ⊆ Y .

Proposition 4.16. We observe the following properties of interior.

1. For all Y , Y o ⊆ Y .

2. For all Y , Y o is an open set.

21

3. If Y is already an open set, then Y o = Y .

Example 4.17. In Sierpiński space, the interior of {1} is the empty set.

Proposition 4.18. For any topological space (X,O), the poset O of open sets
ordered by inclusion is a complete Heyting algebra.

Proof. We define joins using union and meets using (binary) intersection. Top
and bottom element are given by X and ∅ respectively. It only remains to
define the implication operator. We might try to define this using the canonical
implication on subsets, i.e. for sets U and V , the set

{x ∈ X | x ∈ U → x ∈ V }.

However, the above set is not necessarily open, even when U and V are. To
get an open set, we use the interior operator. Namely, we define

U → V := {x ∈ X | x ∈ U → x ∈ V }o.

It only remains to check that this satisfies the necessary condition to be the
implication of a Heyting algebra (exercise!).

NB: Using the law of excluded middle, we could alternatively define impli-
cation by

U → V := (V ∪ (X \ U))o

Remark 4.19. Since lattices of open sets have all joins, they must also have
meets, by proposition 4.5. Whereas the join of a set S ⊆ O is just the union,∨
S =

⋃
S, the intersection

⋂
S is not necessarily open. However, we can still

explicitly describe the meet of S using the interior operator,
∧
S = (

⋂
S)o.

Definition 4.20. Let (X,OX), (Y,OY) be topological spaces. We say a func-
tion f : X → Y is continuous if for every open set U of Y , the preimage, f−1(U)
is an open set of X.

4.3.2 Neighbourhoods in a topological space

Definition 4.21. Let (X,O) be a topological space. A neighbourhood of a
point x ∈ X is an open set U ∈ O such that x ∈ U .

We think of a neighbourhood of a point x as a set of points that are “nearby”
x. For example, in a discrete topology, every point x has a neighbourhood {x}
that does not contain any other points. We can visualise this as a clear space
around x that does not contain any elements. On the other hand in an indiscrete
space, the only neighbourhood of a point x is the entire space. The points are so
“close together” that you can’t look at one without looking at the whole space.
In Sierpiński space, every neighbourhood of 1 also contains 0, so 0 is “infinitely
close” to 1, but this is not a symmetric relation: 0 has a neighbourhood that
does not contain 1.

22

Definition 4.22. Let (X,O) be a topological space. A basis of the topology, is a
set of open sets B ⊆ O with the following property. For any open neighbourhood
U of a point x, there exists an open neighbourhood V of x with V ⊆ U and
V ∈ B.

Equivalently, a basis is a set B such that for every open set U , there is a set
S ⊆ B such that U =

⋃
S.

Remark 4.23. Note that the set of all open sets is a basis. This satisfies the
definition, but is typically not useful.

Note that if B is a basis of a topology, then a set is open if and only if it is
equal to the union

⋃
S for some S ⊆ B.

Example 4.24. If (Q,≤) is any poset, then we can define a basis of the upset
topology as the set of upwards closed sets with least element. Note that there
is a precise correspondence between the elements of the basis and elements of
Q.

4.3.3 Product topologies

Definition 4.25. We define a topology on NN as follows. Given a finite sequence
of numbers σ of length k, we define the set Uσ as follows.

Uσ := {f : N → N | ∀i < k f(i) = σ(i)}

We define a set U to be open if it can be written as a union of sets of the form
Uσ for finite sequences σ. We refer to the topological space with these open sets
as Baire space.

We refer to the subspace topology on the set of binary sequences 2N ⊆ NN

as Cantor space.
We refer to the set of binary sequences with at most one 1, with the subspace

topology as N∞.

Proposition 4.26. Assume LPO. Then N∞ is isomorphic to the set N⨿{∞},
where a set U ⊆ N ⨿ {∞} is open when it satisfies the following. If ∞ ∈ U ,
then for some n ∈ N, U contains every m ∈ N with m ≥ n.

Proposition 4.27. Given NN with the Baire space topology, and N with the
discrete topology, a function F : NN → N is continuous if and only if it satisfies
the following condition. For every f ∈ N, there is a natural number n such
that for any g ∈ N satisfying the condition that g(i) = f(i) for i < n, we have
F (g) = F (f).

Proof. Since N has the discrete topology, every singleton set {m} is open, and
in any case we can write any set as a union of singletons. It follows that F
is continuous if and only if F−1({m}) is open for every m. This says exactly
that any element f of F−1({m}) has a basic open neighbourhood contained in
F−1({m}). This precisely says that the condition described in the proposition

23

holds whenever F (f) = m. However, F is continuous precisely when this con-
dition holds for arbitrary m, so given a function f , we can just apply it with
m := F (f).

The Baire space topology on NN is an instance of a more general construction
known as the product topology.

Definition 4.28. Suppose we are given a set I, and a family of topological
spaces (Xi,Oi) for each i ∈ I. We define a topology on the product

∏
i∈I Xi as

follows. Given a pair σ = (F, (Uj)j∈F) consisting of a finite subset F of I, say
i1, . . . , ik, together with open sets Uj ∈ Oij for j = 1, . . . , k, we define the set
Uσ by the equation

Uσ := {f ∈
∏
i∈I

Xi | ∀j ∈ F f(j) ∈ Uj}

We refer to sets of the form Uσ as basic opens, and define a set to be open if
it is a union of basic opens. We refer to the resulting topological space as the
product topology of the family.

Proposition 4.29. Baire space is the product of the (constant) family consisting
of countably many copies of N with the discrete topology.

4.3.4 Connectedness

An important concept when looking at the behaviour of topological models is
that of connectedness, which informally is the idea that a space is “indecom-
posable” - it is impossible to break the space up cleanly into separate pieces.

Definition 4.30. A topological space X is connected if given open sets U and
V such that U ∪ V = X and U ∩ V = ∅ we have either X = U or X = V .

Proposition 4.31. A topological space X is connected if and only if for every
discrete topological space Y , every map X → Y is constant.

Example 4.32. Sierpiński space and the abstract interval are connected.

Example 4.33. Any discrete space with at least two distinct points is not
connected.

Example 4.34. Baire space, Cantor space and N∞ are not connected.

Definition 4.35. We say a topological space X is locally connected if for every
point x of X and every open neighbourhood U of x, there is an open neighbour-
hood V of x such that V ⊆ U and V is connected as a topological space with
the subspace topology.

24

4.4 Formal topologies

It is sometimes convenient to take an alternative approach to topology, where
we ignore the points of the topological space, and instead focus on the elements
of a basis for the topology.

Definition 4.36. A formal topology is a poset (B,≤) together with a relation
◁ of sort B,P(B) (i.e. a relation on B and sets of elements of B), satisfying
the following axioms, for all a, b ∈ B and U, V ⊆ B. We write U≤ to mean the
downwards closure of U , i.e. {a ∈ B | ∃b b ∈ U ∧ a ≤ b}.

1. a ∈ U implies a ◁ U .

2. a ◁ U and a ◁ V implies a ◁ U≤ ∩ V ≤.

3. If a ◁ U and for all b ∈ U , b ◁ V , then a ◁ V .

4. a ≤ b implies a ◁ {b}

We refer to the relation ◁ as the covering relation of the formal topology.
When b ◁ U , we say b is covered by U .

Definition 4.37. We say an open set is a subset U of B satisfying the following
conditions:

1. If a ≤ b and b ∈ U then a ≤ b. (downwards closure)

2. If a ◁ U , then a ∈ U .

Proposition 4.38. The open sets of a formal topology ordered by inclusion
form a complete Heyting algebra.

Example 4.39. If (B,≤) is any poset, we can define a minimal covering relation
by b ◁ U , whenever b ≤ a for some a ∈ U .

Example 4.40. Let (X,O) be a topological space with a basis B. We define
a formal topology as follows. We take the underlying poset to be B ordered by
subset inclusion. If U is a set of basic open sets, We say b ◁ U if b ⊆

⋃
U . Then

open sets of the formal topology correspond precisely to the open sets of the
topological space. If V ⊂ X is an open set of the topological space, we define
an open set U of the formal topology, by taking U to be the set of basic opens
b such that b ⊆ V . Given an open set U of the formal topology, we define an
open set V ⊂ X of the topological space by V :=

⋃
U .

Example 4.41. As a special case of the previous example, we can define formal
Baire space as follows. We take B to be the set of finite sequences of natural
numbers, ordered by reverse extension. That is, for finite sequences σ and τ ,
we say σ ≤ τ if the length of σ is greater than than of τ , and whenever i is less
than the length of τ , we have τ(i) = σ(i). We define the covering relation ◁
to be the smallest relation satisfying the axioms of a formal topology, and such
that if σ ∗ ⟨n⟩ ◁ U for all n, then σ ◁ U .

25

5 Heyting Valued Models

In this section we will see our first example of models of intuitionistic logic.
The essential idea is that we think of the elements of a Heyting algebra as
“truth values.” We then assign each sentence a truth value in such a way
that logical connectives ∧, ∨ and → are sent to the corresponding operation
in the Heyting algebra. This would work directly for propositional logic, but
for first order we also need to deal with quantifiers. The way we will deal with
this here is by making the additional assumption that we are given a complete
Heyting algebra. We will then use this to interpret quantifiers; namely by
sending universal quantifiers to meets, and existential quantifiers to joins.

5.1 Heyting valued models

Throughout this section we fix a signature with set of sorts S, set of operator
symbols O and set of relation symbols R.

We furthermore assume we are given a complete Heyting algebra P .

Definition 5.1. A Heyting valued model consists of the following data:

1. For each sort S ∈ S a set MS , together with a map ES : MS → P

2. For each operator symbol O ∈ O, of sort S1, . . . , Sn → T , a function
JOK : MS1

× . . .×MSn
→ MT , satisfying the following for any a1, . . . , an

with ai ∈ MSi :

E(JOK(a1, . . . , an)) ≥ E(a1) ∧ . . . ∧ E(an)

3. For each relation symbol R ∈ R of sort S1, . . . , Sn, a function JRK : MS1
×

. . .×MSn → P .

Finally, for technical reasons,1 we will also assume the following non triviality
condition. For every sort S ∈ S there exists an element a ofMS with E(a) = ⊤.

Definition 5.2. A topological model is a Heyting valued model where the Heyt-
ing algebra is the lattice of open sets of a topological space.

For a ∈ MS , we refer to E(a) as the extent of a. One way to think about
this is that the object a does not exist absolutely, but only with truth value
E(a). We technically allow for the case E(a) = ⊥ (“a does not exist”), but such
objects will not affect any truth values in the Heyting valued model, so we can
always just ignore them. When P is the lattice of open sets of a topological
space, we can visualise E(a) as the region of space where a is present.

Definition 5.3. A variable assignment is a function σ with domain the set of
free variables such that for each free variable xS of sort S, σ(xS) ∈ MS .

Given a variable assignment σ, a free variable xS and an element a of MS ,
we write for σ[xS 7→ a] for the assigment that sends xS to a, and sends yT to
σ(yT) when yT ̸= xS .

1This relates to the formulation of first order logic we are using.

26

For each term t of sort S ∈ S, and each variable assignment σ, we define an
element JtKσ of MS by induction on terms.

JxSKσ := σ(xS)

JOt1 . . . tnKσ := JOK(Jt1Kσ, . . . , JtnKσ)

Note that we can show the following lemmas by induction on terms.

Lemma 5.4. Let s be a term of sort S and σ a variable assignment. Let
x1, . . . , xn be a list of variables including any occuring free in s. Then,

E(σ(x1)) ∧ . . . ∧ E(σ(xn)) ≤ JsKσ

Lemma 5.5. Let t be a term and σ a variable assignment. Suppose xS is a free
variable, and s is a term of sort S. Then we have the following equality.

Jt[xS/s]Kσ = JtKσ[xS 7→JsKσ]

For each formula φ and each variable assignment σ defined on all variables
occuring free in φ, we define an element JφKσ of P , by induction on terms.

JRt1 . . . tnKσ := JRK(Jt1Kσ, . . . , JtnKσ)
J⊥Kσ := ⊥

Jφ ∧ ψKσ := JφKσ ∧ JψKσ
Jφ ∨ ψKσ := JφKσ ∨ JψKσ

Jφ→ ψKσ := JφKσ → JψKσ

J∃xS φ(x)Kσ :=
∨

a∈MS

ES(a) ∧ JφKσ[x 7→a]

J∀xS φ(x)Kσ :=
∧

a∈MS

ES(a) → JφKσ[x 7→a]

We again get a substitution lemma.

Lemma 5.6. Let φ be a formula, xS a free variable of sort S ∈ S and s a term
of sort S, such that the substitution φ[xS/s] avoids free variable capture. Then
we have the following equality.

Jφ[xS/s]Kσ = JφKσ[xS 7→JsKσ]

Proof. By induction on formulas.

We can similarly show the following lemma by induction on formulas.

Lemma 5.7. Let φ be a formula, xS a free variable of sort S ∈ S that does
not occur in φ and a any element of MS. Then we have

JφKσ = JφKσ[xS 7→a]

27

Given a finite list of formulas Γ := φ1, . . . , φn, we write JΓKσ for Jφ1Kσ ∧
. . . ∧ JφnKσ.

We can now prove the soundness theorem for Heyting valued models.

Theorem 5.8. Suppose that Γ ⊢ φ is provable in intuitionistic first order logic,
where Γ = ψ1, . . . , ψn, and x1, . . . , xm is a list of free variables including all
those occuring in Γ or φ. Then for any free variable assignment σ, we have.

JΓKσ ∧ E(σ(x1)) ∧ . . . ∧ E(σ(xm)) ≤ JφKσ

Proof. We show this by induction on proofs. We will just do some of the cases
to illustrate the idea (the remainder are left as an exercise).

The case ∧I Suppose that we have deduced Γ ⊢ φ ∧ ψ by ∧I, together with
Γ ⊢ φ and Γ ⊢ ψ. By the inductive hypothesis, we know that for any variable
assignment σ and any list of free variables x1, . . . , xm including all those occuring
free in Γ, φ or ψ, we have the following.

JΓK ∧ E(σ(x1)) ∧ . . . ∧ E(σ(xn)) ≤ JφKσ
JΓK ∧ E(σ(x1)) ∧ . . . ∧ E(σ(xn)) ≤ JψKσ

It follows directly from the fact that Jφ ∧ ψKσ = JφKσ ∧ JψKσ by definition, and
the definition of meet in a lattice that

JΓK ∧ E(σ(x1)) ∧ . . . ∧ E(σ(xn)) ≤ Jφ ∧ ψKσ

which is exactly what we needed to show.

The case ∧E Suppose we have deduce Γ ⊢ φ from Γ ⊢ φ ∧ ψ. By the
inductive hypothesis, we know that for any variable assignment σ and any list
of free variables x1, . . . , xm including all those occuring free in Γ, φ or ψ, we
have the following.

JΓKσ ∧ E(σ(x1)) ∧ . . . ∧ E(σ(xm)) ≤ Jφ ∧ ψKσ

We can easily deduce the following from the definitions.

JΓKσ ∧ E(σ(x1)) ∧ . . . ∧ E(σ(xm)) ≤ JφKσ

It only remains to deal with the case where we are given a list of variables, say
x1, . . . , xm including all those in Γ and φ, but missing out some free variables
occuring in ψ but not Γ or φ. Let yT1

1 , . . . , yTk

k be a list of all the free variables
occuring in ψ, but not equal to xi for any i. Let a1, . . . , ak be a list with
aj ∈ MTj

and E(aj) = ⊤ for j = 1, . . . , k. Let τ be the variable assignment
sending yj to aj and otherwise equal to σ. By lemma 5.7 we have JΓKτ = JΓKσ
and JφKτ = JφKσ, and by the basic properties of meet, we have

JΓKτ ∧ E(σ(x1)) ∧ . . . ∧ E(σ(xm)) ∧ E(τ(y1)) ∧ . . . ∧ E(τ(yk)) =

JΓKτ ∧ E(σ(x1)) ∧ . . . ∧ E(σ(xm))

28

We can thereby deduce the following, where this time the list x1, . . . , xm only
needs to contain variables occuring free in Γ and φ.

JΓKσ ∧ E(σ(x1)) ∧ . . . ∧ E(σ(xm)) ≤ JφKσ

The remaining logical connectives are very similar and are left as an exer-
cise. However, for quantifiers we need to be a bit careful and make use of the
substitution lemmas.

The case ∃E Suppose we have deduced Γ ⊢ ψ from Γ ⊢ ∃y φ[x/y] and Γ, φ ⊢
ψ. We want to show the following, for all variable assignments σ and lists of
variables x1, . . . , xm containing all the free variables in Γ and ψ:

JΓKσ ∧ E(σ(x1)) ∧ . . . ∧ E(σ(xm)) ≤ JψKσ (1)

For any a ∈ MS , we have the following by the inductive hypothesis,

JΓKσ ∧ JφKσ[x 7→a] ∧ E(σ(x1)) ∧ . . . ∧ E(σ(xm)) ∧ E(a) ≤ JψKσ

We deduce that we have the following:∨
a∈MS

(JΓKσ ∧ JφKσ[x 7→a] ∧ E(σ(x1)) ∧ . . . ∧ E(σ(xm)) ∧ E(a)) ≤ JψKσ

By distributivity, we have

JΓKσ ∧ E(σ(x1)) ∧ . . . ∧ E(σ(xm)) ∧
∨

a∈MS

(E(a) ∧ JφKσ[x 7→a]) ≤ JψKσ

which is just

JΓKσ ∧ E(σ(x1)) ∧ . . . ∧ E(σ(xm)) ∧ J∃xφKσ ≤ JψKσ

However, again by the inductive hypothesis we have

JΓKσ ∧ E(σ(x1)) ∧ . . . E(σ(xn)) ≤ J∃xφKσ

It follows that

JΓKσ ∧E(σ(x1))∧ . . .∧E(σ(xm))∧ J∃xφKσ = JΓKσ ∧E(σ(x1))∧ . . .∧E(σ(xm))

However, we can now deduce (1).

The case ∃I Suppose we have deduced Γ ⊢ ∃xS φ(x) from Γ ⊢ φ(s), where
s is a term of sort S, avoiding free variable capture. We want to show the
following, for all variable assignments σ:

JΓKσ ∧ E(σ(x1)) ∧ . . . ∧ E(σ(xm)) ≤ J∃xS φKσ

29

Let yT1
1 , . . . , yTk

k be a list of the free variables occuring in s but not equal
to xi for any i. Let a1, . . . , ak be a list with aj ∈ MTj and E(aj) = ⊤ for
j = 1, . . . , k. Let τ be the variable assignment obtained by setting the value
at yj to be aj for each j, and otherwise agreeing with σ. By the inductive
hypothesis, we have

JΓKτ ∧ E(σ(x1)) ∧ . . . ∧ E(σ(xm)) ≤ Jφ[xS/s]Kτ

By lemma 5.6 we have Jφ[xS/s]Kτ = JφKτ [xS 7→JtKτ]. We can therefore reason
as follows,

JΓKτ ∧ E(σ(x1)) ∧ . . . ∧ E(σ(xm)) ≤ Jφ[xS/s]Kτ
= JφKτ [x7→JtKτ]

≤
∨

a∈MS

JφKτ [x 7→a]

= J∃xφKτ
= J∃xφKσ

The case ∀E Suppose that we have derived Γ ⊢ φ[x/s] from Γ ⊢ ∀xS φ.
Suppose that we are given a list of variables x1, . . . , xm including all those
occuring free in Γ and φ[x/s], and σ is a variable assignment. By induction, we
may assume we already have the following.

JΓK ∧ E(σ(x1)) ∧ . . . ∧ E(σ(xm)) ≤ J∀xφKσ

=
∧

a∈MS

(E(a) → JφKσ[xS 7→a])

≤ E(JsKσ) → JφKσ[x 7→JsKσ]

= E(JsKσ) → Jφ[x/s]Kσ

By the definition of Heyting implication, we can deduce

JΓK ∧ E(σ(x1)) ∧ . . . ∧ E(σ(xm)) ∧ E(JsKσ) ≤ Jφ[x/s]Kσ

Note that the list of variables x1, . . . , xn includes any occuring free in s. Hence
we have E(JsKσ) ≥ E(x1) ∧ . . . E(xm) by lemma 5.4. Hence, we have

JΓK ∧ E(σ(x1)) ∧ . . . ∧ E(σ(xm)) ∧ E(JsKσ) =
JΓK ∧ E(σ(x1)) ∧ . . . ∧ E(σ(xm))

But we are now done.

Corollary 5.9. Suppose that ⊢ φ. Then for every variable assignment σ such
that E(σ(xS)) = ⊤ for all variables xS occuring free in φ, we have JφKσ = ⊤.
(We also write this M ⊨ φ).

30

5.2 Some simple examples of Heyting valued models

We now give some basic examples of Heyting valued models to illustrate how
they work, and the use of the soundness theorem to get independence results.

5.2.1 Trivial Heyting valued models

We first consider the simplest Heyting algebra, 2, which just has two elements
⊥ and ⊤. Assuming the law of excluded middle, this is a complete Heyting
algebra.2 We can also see this Heyting algebra as the lattice of open sets of the
topological space with exactly one point.

In this case, we have a set MS for each sort S ∈ S. As mentioned, the
elements x with ES(x) = ⊥ don’t play any role when assigning truth values, so
by removing them, we may assume without loss of generality that ES(x) = ⊤ for
all x ∈ MS . We then see that the interpretation of an operator symbol O of sort
S1, . . . , Sn → T is just a function MS1 × . . .×MSn → MT . The interpretation
of a relation symbol R of sort S1, . . . , Sn is just a subset of MS1

× . . .×MSn
.

We can see that this has recovered the usual notion of model for classical
logic. Furthermore, note that the assigment of truth values is the same as usual
for models. That is, we have the following equivalences:

Jφ ∧ ψKσ = ⊤ iff JφKσ = ⊤ and JψKσ = ⊤
Jφ ∨ ψKσ = ⊤ iff JφKσ = ⊤ or JψKσ = ⊤
Jφ→ ψKσ = ⊤ iff JφKσ = ⊤ implies JψKσ = ⊤
J∃xS φ(x)K = ⊤ iff there exists a ∈ MS such that JφKσ[x 7→a] = ⊤
J∀xS φ(x)K = ⊤ iff for all a ∈ MS , JφKσ[x 7→a] = ⊤

Note that if the law of excluded middle is true in the metatheory where we
are working, then it also holds in any such model.

5.2.2 Sierpiński space

In order to get results about intuitionistic logic that aren’t already true for
classical logic, we need to consider Heyting valued models for non trivial Heyting
algebras.

We first consider the open sets of Sierpiński space. These consist of ⊥ =
∅, ⊤ = {0, 1} and an “intermediate truth value” {0}, with ⊥ ≤ {0} ≤ ⊤
corresponding to the open set containing just 0.

This is already enough to get some simple separation results, showing that
some theorems easily provable in classical logic cannot be proved in intuitionistic
logic. To illustrate the idea we will consider a very simple signature, which just
one sort, no operator symbols and a single 0-ary relation symbol Q.

Theorem 5.10. The formula Q ∨ ¬Q is not provable in intuitionistic logic.

2When we are working in a constructive metatheory, we can instead use the set of all
subsets of a singleton set.

31

Proof. We consider the Heyting valued model on Sierpiński space over the above
signature defined as follows. We take M to be the one element set {∗}, and
define E(∗) := ⊤. It remains to define the interpretation of the 0-ary relation
symbol JQK, which just needs to be an element of the Heyting algebra. We
take JQK to be the intermediate truth value {0}. By definition this gives us the
following for the unique variable assignment σ.

JQKσ = {0}

We now consider the truth value of ¬Q. Recall that this is just notation for
Q→ ⊥.

JQ→ ⊥K = JQK → J⊥K
= {0} → ∅
= {1}o

= ∅

Note that even though the truth value of Q was non trivial, the truth value
of ¬Q is still ⊥. We can now calculate,

JQ ∨ ¬QK = JQK ∪ J¬QK
= {0} ∪ ∅
= {0}
̸= ⊤

Now we observe that if Q ∨ ¬Q was provable in intuitionistic logic we would
have by theorem 5.8 that JQ ∨ ¬QK = ⊤. Since this is not the case, we can
deduce that Q ∨ ¬Q is not provable.

We give one more example using Sierpiński space, this time to illustrate the
use of the extent predicate. We work over a signature with one sort, no operator
symbols, and two relation symbols, a nulllary relation Q, and a unary relation
R.

It’s useful to note that we have the following lemmas. The first is for any
Heyting algebra.

Lemma 5.11. Let p, q be elements of a Heyting algebra. Then p → q = ⊤ if
and only if p ≤ q.

Proof. Suppose that p ≤ q. Then p ∧ r ≤ q for any element r of the Heyting
algebra. This implies that p ∧ r ≤ q if and only if r ≤ ⊤. In other words
⊤ satisfies the property that uniquely characterises p → q. It follows that
⊤ = p→ q. Note that we can reverse each step of the above argument to show
the converse.

Lemma 5.12. Let U be an open set of a topological space X. Then U → ⊥ =
(X \ U)o (the interior of the complement of U).

32

Proof. By expanding out the definition of implication for the opens of a topo-
logical space.

Theorem 5.13. The following statement (sometimes referred to as constant
domain) is not provable in intuitionistic logic.

∀x (Q ∨Rx) → (Q ∨ ∀xRx)

Proof. We define a topological model on Sierpiński space as follows. We define
M to have 2 elements, say M = {a, b}. In order to satisfy the non triviality
condition, we need E(x) = ⊤ for some x. Say E(a) = ⊤. We take the other
extent to be the intermediate truth value E(b) := {0}. We again take Q to have
the intermediate truth value JQK = {0}. We define the interpretation of R by
JRK(a) = ⊤ and JRK(b) = ⊥.

Note that J∀x (Q∨Rx) → (Q∨∀xRx)K = ⊤ if and only if J∀x (Q∨Rx)K ⊆
JQ ∨ ∀xRxK. We explicitly compute both values as follows.

J∀x (Q ∨Rx)K =
∧

c∈M
E(c) → JQ ∨RxKx7→c

=
∧

c∈M
E(c) → (JQK ∪ JRxKx7→c)

= (E(a) → (JQK ∪ JRxKx 7→a)) ∧ (E(b) → (JQK ∪ JRxKx 7→b))

= (⊤ → ({0} ∪ ⊤)) ∩ ({0} → ({0} ∪ ⊥))

= (⊤ → ⊤) ∩ ({0} → {0})
= ⊤

JQ ∨ ∀xRxK = {0} ∪
∧

c∈M
E(c) → JRxKx 7→c

= {0} ∪ ((E(a) → JRxKx 7→a) ∩ (E(b) → JRxKx 7→b))

= {0} ∪ ((⊤ → ⊤) ∩ ({0} → ⊥))

= {0} ∪ (⊤ ∩ {1}o)
= {0} ∪ (⊤ ∩ ∅)
= {0}
̸= J∀x (Q ∨Rx)K

6 Kripke Models and Formal Topological Mod-
els

6.1 Forcing notation for Heyting valued models

It can be sometimes be useful to look at Heyting valued models from a differ-
ent angle. Rather than looking at the truth value of a formula, which could

33

be any element of the Heyting algebra, we fix a set of elements that are sim-
ple to describe or otherwise well behaved, and use this to give our alternative
viewpoint.

For this we use the definition of basis that we have seen for topological spaces
but generalises to all complete Heyting algebras (or in fact any complete poset).

Definition 6.1. A basis or generating set for a Heyting algebra P is a set
B ⊆ P with the following property. For any element p of P , we have

p =
∨

{q ∈ B | q ≤ p}

We can use this to define forcing notation or Kripke-Joyal semantics for
Heyting valued models.

Definition 6.2. Let p be an element of a basis B of a Heyting algebra. We
write p ⊩σ φ for p ≤ JφKσ. If p ⊩σ φ, we say p forces φ.

Note that we can recover the truth value of φ with respect to a variable
assignment σ from the forcing relation ⊩σ. Namely, we have the following
equality.

JφKσ =
∨

{p ∈ B | p ⊩σ φ}

We can directly describe the forcing relation for logical formulas using the
propositions below.

Proposition 6.3. For all p ∈ B, and all formulas φ and ψ, we have the
following.

1. p ⊩σ ⊥ if and only if p = ⊥.

2. p ⊩σ φ ∧ ψ if and only if p ⊩σ φ and p ⊩σ ψ.

3. p ⊩σ φ → ψ if and only if, for all q ∈ B such that q ≤ p and q ⊩σ φ, we
also have q ⊩σ ψ.

4. p ⊩σ ∀xφ if and only if for all a ∈ MS and for all q ∈ B with q ≤ p, if
q ⊩ E(a), then q ⊩σ[x 7→a] φ.

Proof. 1 and 2 follow directly from the definitions of ⊥ and ∧ in a lattice.
We now show 3.

p ≤ JφKσ → JψKσ iff

p ∧ JφKσ ≤ JψKσ iff

JφKσ ≤ p→ JψKσ iff∨
{r | r ⊩σ φ} ≤ p→ JψKσ

However, the final inequality holds if and only if for every r such that r ⊩ φ, we
have r ∧ p ≤ JψKσ. However, this holds precisely when for all q ∈ B such that
q ≤ r and q ≤ p we have q ⊩σ ψ. Finally, observe that q is less than or equal
to an element r such that r ⊩σ φ if and only if q ⊩σ φ. Hence we now have the
condition in 3.

We can show 4 by a very similar argument to 3.

34

We say a basis B is proper if it does not contain ⊥. Note that in this case
we have p ⊮σ ⊥ for all p.

We don’t have such a different looking characterisation of the other logical
connectives, but we can reformulate them a little, by using covering notation.

Definition 6.4. Let S ⊆ P 3 and p ∈ B. We write p ◁ S and say p is covered by
S when p ≤

∨
S.

Proposition 6.5. For all p ∈ B, and all formulas φ and ψ, we have the
following.

1. p ⊩σ φ ∨ ψ if and only if p ◁ {q ∈ B | q ⊩σ φ or q ⊩σ ψ}.

2. p ⊩σ ∃xφ if and only if p ◁
⋃

a∈MS
{q ∈ B | q ≤ E(a) and q ⊩σ[x 7→a] φ}.

6.2 Kripke models

Let (Q,≤) be a poset with a bottom element. We will define Kripke models
for the poset. To keep things simple, we will only consider signatures with no
operator symbols.4 Write S for the set of sorts, and R for the set of relation
symbols.

Definition 6.6. A Kripke model consists of the following data for each q ∈ Q,

1. For each sort S ∈ S, an inhabited set MS,q

2. For each relation symbol R ∈ R of sort S1, . . . , Sn and q ∈ Q, a set
[R]q ⊆ MS1,q × . . .×MSn,q

satisfying the following conditions for all p, q ∈ Q such that p ≤ q:

1. MS,p ⊆ MS,q for all sorts S.

2. For each relation symbol R ∈ R we have [R]p ⊆ [R]q.

Given a Kripke model, we define a topological model as follows. We first need
to specify the topological space. We take it to be Q with the upset topology.

1. For each sort S ∈ S, we define MS :=
⋃

q∈Q MS,q.

2. For each sort S ∈ S, and a ∈ MS , we define ES(a) := {q ∈ Q | a ∈ MS,q}.

3. For each relation symbol R ∈ R of sort S1, . . . , Sn and for elements
a1, . . . , an with each ai belonging to MSi

, we define JRK(a1, . . . , an) to
be {q ∈ Q | (a1, . . . , an) ∈ [R]q}.

3Typically we will only consider the case S ⊆ B.
4In order to deal with operator symbols it is necessary to use a construction called sheafi-

fication that makes the definition more complicated. We will see a version of this later for
topological models of HAω . Exercise: Think about what goes wrong in the definition of
Heyting valued model here when we have a binary operation symbol.

35

Note that by the definition of Kripke model, we can see that for each a,
ES(a) is an open set in the topology, i.e. an upwards closed subset of Q.
Similarly, the condition on relations in the definition of Kripke model tells us
that JRK(a1, . . . , an) is always an open set. Hence we do indeed have a well
defined topological model on the upset topology.

We can now explicitly describe the forcing relation for topological models
derived from Kripke models in this way. First recall that we can view the
elements of Q itself as a basis for the upset topology, where q ∈ Q corresponds
to the upset {r ∈ Q | q ≤ r}. Under this correspondence, we have for any
upwards closed set U that p ◁ U if and only if p ∈ U . Also recall that the
correspondence between elements of Q ordered by ≤ and upwards closed sets
with least element ordered by ⊆, the order is reversed. Hence if we want to
describe the forcing relation in terms of the order on Q, we need to reverse all
the inequalities in proposition 6.3. This gives us the following definition:

p ⊮σ ⊥ always
p ⊩σ φ ∧ ψ iff p ⊩σ φ and p ⊩σ ψ
p ⊩σ φ ∨ ψ iff p ⊩σ φ or p ⊩σ ψ
p ⊩σ φ→ ψ iff for all q ≥ p if q ⊩σ φ then q ⊩σ ψ
p ⊩σ ∃xφ iff there exists a ∈ Mp such that p ⊩σ[x 7→a] φ
p ⊩σ ∀xφ iff for all q ≥ p and a ∈ Mq, q ⊩σ[x 7→a] φ

6.3 Formal topological models

Kripke models turn out to be useful in some situations, but are limited in some
ways. For this reason, we consider a generalisation that includes some more
examples of Heyting valued models, even some that are not topological models,
but behaves very in a similar way to Kripke models, with a similar explicit
description of their forcing relation. Instead of a poset, we consider the more
general definition of formal topology. Fix a formal topology B with ordering
relation ≤ and covering relation ◁. We again restrict to signatures without
operator symbols for simplicity.

Definition 6.7. A formal topological model consists of the following data for
each p ∈ B,

1. For each sort S ∈ S, a set MS,p

2. For each relation symbol R ∈ R of sort S1, . . . , Sn and p ∈ B, a set
[R]p ⊆ MS1,p × . . .×MSn,p

satisfying the following conditions for all q, p ∈ B:

1. If q ≤ p, then MS,p ⊆ MS,q. If q ◁ U and a is an element of
⋂

p∈U MS,p

then a ∈ MS,q.

2. For each relation symbol R ∈ R, if q ≤ p, then [R]p ⊆ [R]q. If q ◁ U and
a ∈

⋂
p∈U [R]p then a ∈ [R]q.

36

Similarly to Kripke models, we can define a Heyting valued model over the
open sets of the formal topology as follows.

1. For each sort S ∈ S, we define MS :=
⋃

q∈B MS,q.

2. For each sort S ∈ S, and a ∈ MS , we define ES(a) := {q ∈ B | a ∈ MS,q}.

3. For each relation symbol R ∈ R of sort S1, . . . , Sn and for elements
a1, . . . , an with each ai belonging to MSi , we define JRK(a1, . . . , an) to
be {q ∈ B | (a1, . . . , an) ∈ [R]q}.

Note that we have chosen the definition of formal topological model so that
extent and relation symbols are interpreted as open sets with respect to the
formal topology, and so we do get a Heyting valued model over the complete
Heyting algebra of open sets.

Note furthermore that for each element p of B, we can define Up to be the
least open set containing p to get a basis for the Heyting algebra of open sets.
We also have Up ◁ V if and only if p ◁ V . We can then use propositions 6.3 and
6.5 to explicitly describe the forcing relation with respect to elements p of B as
follows.

p ⊩σ ⊥ iff p ◁ ∅
p ⊩σ φ ∧ ψ iff p ⊩σ φ and p ⊩σ ψ
p ⊩σ φ ∨ ψ iff p ◁ {q ∈ B | q ⊩σ φ or q ⊩σ ψ}
p ⊩σ φ→ ψ iff for all q ≤ p if q ⊩σ φ then q ⊩σ ψ
p ⊩σ ∃xφ iff p ◁ {q ∈ B | ∃a ∈ Mq q ⊩σ[x 7→a] φ}
p ⊩σ ∀xφ iff for all q ≤ p and a ∈ Mq, q ⊩σ[x 7→a] φ

We say a formal topology is proper if it is never the case that p ◁ ∅. In this
case we can see that p ⊮σ ⊥ for all p ∈ B.

7 Heyting Valued Models of Second Order Arith-
metic

7.1 Standard models

The definition of Heyting valued model is a very general one. This has ad-
vantages - we will see later the completeness theorem for complete Heyting
algebras, which says that if a formula holds in every Heyting valued model,
then it is provable in intuitionistic logic. However, it can also be too flexible. If
we are interested in a specific theory, then each time we want a model with a
particular property, we need to specify the model completely, carefully ensuring
each part is chosen to ensure the axioms of our theory of interest hold. For this
reason, it is often useful to have some notion of standard model of a theory we
are interested in. This is a set recipe for generating Heyting valued models of
the theory, from any complete Heyting algebra. Once the complete Heyting al-
gebra has been chosen, the remaining details of the model are already specified

37

in the general definition, ensuring that the axioms of our theory of interest hold.
For this course the theory of interest will be either HAS or HAω, but the same
idea of standard model also appears for many other theories in logic, such as
subtheories of classical second order arithmetic, set theory (both constructive
and classical), higher order logic and type theory.

7.2 Some new notation regarding variable assignments

It is sometimes notationally inconvenient to always keep track of variable as-
signments. Hence we introduce some notation to avoid having to write them
out every time.

Suppose we are given a signature (S,O,R) and a model over the signature
((MS)S∈S, (JOK)O∈O, (JRK)R∈R) and complete Heyting algebra (P,

∨
,∧,→).

We define a new signature by extending the set of operator symbols O with a
new constant of sort S for each a ∈ MS for each sort S ∈ S. Given a variable
assignment σ and a formula φ whose free variables are x1, . . . , xn, note that
φ[x1, . . . , xn/σ(x1), . . . , σ(xn)] is a closed formula over the extended signature.

We use the notational convention

Jφ[x1, . . . , xn/σ(x1), . . . , σ(xn)]K := JφKσ

Note that this defines a unique element JψK of P for any closed formula ψ
of the extended language.

7.3 Standard models of second order Heyting arithmetic

We first see a standard way to construct Heyting valued models of HAS for
any complete Heyting algebra (P,

∨
,∧,→). We have two sorts to deal with:

numbers and sets. We will define our Heyting valued models to be global. That
is the extent for each sort will be defined to be constantly equal to ⊤. Because
of this, the interpretation of quantifiers the models can be simplified as follows.

J∃xS φ(x)Kσ :=
∨

a∈MS

JφKσ[x 7→a]

J∀xS φ(x)Kσ :=
∧

a∈MS

JφKσ[x 7→a]

Since we have two sorts we just need to define two sets: MN for numbers
and MS for sets. We simply define MN to be the set of (external) natural
numbers N. We define zero and successor to simply be the same as the external
ones.

This leaves the question of what to use for sets MS and how to interpret
the relations ∈ and =. In classical logic, we think of sets of numbers as either
containing a number or not. However, in models of intuitionistic logic it is
useful to allow for more possibilities. When we define a set X we can take the
truth value of n ∈ X to be anything, i.e. any element of the Heyting algebra P
of truth values. Thinking topologically, we allow X to contain n within some

38

regions of space, while not containing it within others. To formalise this we take
MS to be the set of functions assigning a truth value to each natural number:

MS := PN

This idea also suggests to us an interpretation of the membership relation.
For n ∈ N and A : N → P , we define

Jn ∈ AK := A(n)

Finally, we need to define the equality relations on each sort. Since we can
prove decidable equality for numbers in HA, we are forced to just take the
simplest definition:

Jn = mK =

{
⊤ n = m

⊥ n ̸= m

The equality on sets is also now fixed. Firstly by extensionality we need to
have

∧
n∈N Jn ∈ X ↔ n ∈ Y K ≤ JX = Y K. However, in order to satisfy the

axioms for equality we also need to have JX = Y K ≤
∧

n∈N Jn ∈ X ↔ n ∈ Y K.
Hence we are forced to define equality of sets this way:

JX = Y K :=
∧
n∈N

Jn ∈ X ↔ n ∈ Y K

Theorem 7.1. For any complete Heyting algebra (P,
∨
,∧,→), the Heyting

valued model above satisfies all of the theorems of HAS (i.e. JφKσ = ⊤ for any
formula φ provable in HAS and any variable assignment σ).

Proof. By the soundness theorem for intuitionistic logic, it suffices to show that
the model satisfies the axioms of HAS. In fact we can use any axiomatisation
that ends up giving the same theorems. We do not need to prove first order
induction, for example, because we can derive it from second order induction
and comprehension.

We can also derive many axioms from the following statement.

X = Y ↔ (∀nn ∈ X ↔ n ∈ Y) (2)

We can easily show that the above axiom holds in our models, since we chose
to define equality of sets in a way that forces this to be the case.

Clearly (2) implies extensionality, since it is the right to left direction of the
bi-implication. However, it also implies axioms of equality, including all of the
equality axioms for sets:

X = X X = Y → Y = X
X = Y → (Y = Z → X = Z) X = Y → (n ∈ X → n ∈ Y)

It still remains to check the equality axioms for the sort of numbers, namely,
we need to show

n = n n = m → m = n
n = m → (m = k → n = k) n = m→ (n ∈ X → m ∈ X)

39

However, all are straightforward to check for our chosen definition of equality
of numbers, which matches up with the external “true” equality of numbers.

We now check comprehension. We are given a formula φ(x) and need to
verify that for all variable assignments σ we have

J∃X ∀n (n ∈ X ↔ φ(n))K = ⊤

Note that it is sufficient to find a specific element A ∈ MS such that Jn ∈ AK =
Jφ(n)K for all n. However, we can do this by simply defining A(n) := Jφ(n)K.

We finally check second order induction. We need to show that for each
A ∈ MS we have

J(0 ∈ A ∧ ∀n (n ∈ A→ Sn ∈ A)) → ∀nn ∈ AK = ⊤

By unfolding the definitions and using the basic properties of implication and
meet in a complete Heyting algebra, this amounts to showing the following
inequality for each n:

A(0) ∧
∧
m∈N

(A(m) → A(S(m))) ≤ A(n) (3)

We show this by induction on n in the metatheory where we are working. The
case n = 0 is easy from the definition of meet. Suppose we have already shown
(3) for n; we will prove it for Sn. It follows from the inductive hypothesis and
the basic properties of meet that we have

A(0) ∧
∧
m∈N

(A(m) → A(S(m))) = A(0) ∧
∧
m∈N

(A(m) → A(S(m))) ∧ A(n)

We can then reason as follows

A(0) ∧
∧
m∈N

(A(m) → A(S(m))) ∧ A(n) ≤ A(n) ∧ (A(n) → A(S(n)))

≤ A(S(n))

It is a characteristic of the standard model approach that we do not have
a general completeness theorem. There are examples of formulas that hold in
every standard model that are not provable within the theory we are interested
in, in this case HAS. In fact, for standard models of HAS, this is the case
for all true first order formulas. In other words, if a first order formula is true
externally, in the metatheory where we are working, then it is also true in the
model. Results of this kind are known as absoluteness theorems.

Theorem 7.2. Assume the law of excluded middle and that in the Heyting
algebra (P,

∨
,∧,→) we have ⊥ ̸= ⊤. Let φ be a formula over the signature of

HA (i.e. no second order variables free or bound, in particular no second order
quantifiers, no ∈ and no set equality relations). Given a function σ from free
variables to N write φ[σ] for the result of replacing each free variable x by σ(x).
Then for any function σ from variables to N, JφKσ = ⊤ if and only if φ[σ] is
true, and otherwise JφKσ = ⊥.

40

Proof. This is proved by induction on the set of formulas. We give some of the
cases of the induction, with the remainder left as an exercise.

Disjunction Suppose that φ ∨ ψ[σ] is true. If φ[σ] is true, then JφKσ = ⊤ by
the inductive hypothesis, and so also Jφ ∨ ψKσ = ⊤. Similarly if ψ[σ] is true.
Hence in either case we have Jφ ∨ ψKσ = ⊤.

Suppose on the other hand that φ ∨ ψ[σ] is false. Then φ[σ] and ψ[σ] are
both false. Hence JφKσ = JψKσ = ⊥. Hence Jφ ∨ ψKσ = ⊥. By the law of
excluded middle, it follows that if Jφ ∨ ψKσ = ⊤ then φ ∨ ψ[σ] is true.

Implication Suppose that φ → ψ[σ] is true. By the law of excluded middle,
either ψ[σ] is true or φ[σ] is false. In the former case we have JφKσ = ⊤ and in
the latter case JψKσ = ⊥. In either case we can deduce Jφ→ ψKσ = ⊤. On the
other hand, suppose that φ → ψ[σ] is false. Then ψ[σ] is false, and by the law
of excluded middle, φ[σ] is true. Hence JφKσ = ⊥ and JψKσ = ⊤. It follows that
Jφ → ψKσ = ⊥. Again using the law of excluded middle, we can also deduce
that if Jφ→ ψKσ = ⊤, then φ[σ] is true.

Existential quantification Suppose that (∃xφ(x))[σ] is true. Then there
exists a number n such that φ[σ[x 7→ n]] is true. Hence JφKσ[x 7→n] = ⊤. It
follows that J∃xφKσ = ⊤.

Suppose that (∃xφ)[σ] is false. In this case, for every n in N, φ[σ[x 7→ n]]
is false. Hence for each n, JφKσ[x 7→n] = ⊥. Hence J∃xφKσ = ⊥. By the law of
excluded middle, it follows that if J∃xφKσ = ⊤, then (∃xφ)[σ] is true.

7.4 Some examples of standard models of HAS

7.4.1 The trivial Heyting algebra

We now have a way to construct a model of HAS given any complete Heyting
algebra. We first consider what this looks like in the simplest case: the trivial
Heyting algebra 2 = {⊥,⊤}.5

In this case the sort of sets is modelled by functions N → 2. However, these
correspond precisely to actual subsets of N. As always the sort of numbers is
just the external set of numbers N. Combining this with our previous general
discussion of trivial Heyting valued models we get the following theorem.

Theorem 7.3. Let φ be a formula over the signature of HAS. Then φ holds
in the trivial standard model of HAS if and only if it is true (in the metatheory
where we are working).

5Once again we assume the law of excluded middle in order to show this is complete. For
a constructive version, we can instead use the power set of a singleton.

41

7.4.2 Sierpiński space

We now turn to our simplest non trivial example of a complete Heyting algebra:
Sierpiński space. We can use this to show that HAS is different from second
order Peano arithmetic. That is, we show that the law of excluded middle is not
provable in HAS. We specifically show that the following instance of excluded
middle is not provable.

∀X 0 ∈ X ∨ 0 /∈ X

In order to do this, it suffices to find an element A of MS in the standard
model on Sierpiński space such that

J0 ∈ A ∨ 0 /∈ AK ̸= ⊤

We can define such an A as follows. The value of A(n) for n ̸= 0 does
not matter, so we can take it to be ∅, for example. We take A(0) to be the
intermediate truth value {0}.

We can then calculate similarly to before,

J0 ∈ A ∨ 0 /∈ AK = A(0) ∪ ({0, 1} \A(0))o

= {0} ∪ {1}o

= {0} ∪ ∅
= {0}
̸= {0, 1}

7.5 Cantor space

In the previous example, we only showed that an instance of excluded middle
is not provable in HAS. It is a more difficult problem to give an example of
a formula that is consistent with HAS that contradicts the law of excluded
middle. For example, for any formula ψ, we can prove ¬¬(ψ ∨¬ψ) in intuition-
istic logic. Hence ¬(ψ ∨ ¬ψ) is never consistent with HAS. However, we have
previously seen for example that A ∨ ¬A is not provable in intuitionistic logic
with a constant relation symbol A.

To see our first non trivial consistency statement with HAS, we will use the
standard topological model on Cantor space.

Theorem 7.4. The following formula is consistent with HAS, i.e. if we add
it as an axiom it is still impossible to derive ⊥.

¬(∀X 0 ∈ X ∨ 0 /∈ X)

Proof. We will show the formula holds in the standard topological model on
Cantor space. It will follow from the soundness theorem that it is consistent.
That is, we show

J¬(∀X 0 ∈ X ∨ 0 /∈ X)K = ⊤
It suffices to show

J∀X 0 ∈ X ∨ 0 /∈ XK = ⊥

42

Since we are working in a topological model, we can explicitly describe ⊥ as
∅. Hence we will derive a contradiction from the assumption that the open set
J∀X 0 ∈ X ∨ 0 /∈ XK contains an element f .

By expanding out the interpretation of universal quantification and using
the explicit description of meet in a topological space, we have

f ∈

(⋂
A∈MS

J0 ∈ A ∨ 0 /∈ AK

)o

⊆
⋂

A∈MS

J0 ∈ A ∨ 0 /∈ AK

We will show this leads to a contradiction by finding A such that f does not
belong to J0 ∈ A ∨ ¬0 ∈ AK. We define this A as follows.

A(n) =

{
2N \ {f} n = 0

∅ otherwise

We clearly have f /∈ J0 ∈ AK by construction.
However, we can calculate

J0 /∈ AK = (2N \A(n))o

= {f}o

= ∅

Hence we have f /∈ J0 ∈ A ∨ 0 /∈ AK, as we needed.

7.6 The standard model of HAS on N∞

We can formulate LLPO in HAS as the following formula:

∀x (x ∈ X ∨ x /∈ X) ∧ ∀x, y (x ∈ X ∧ y ∈ X → x = y) →
(∀x 2x /∈ X) ∨ (∀x 2x+ 1 /∈ X)

Suppose we want to verify that LLPO is not provable in HAS. Since HAS
says something is true for each binary sequence with at most one 1, we might
guess that it is a good idea to try a topological model where points are exactly
the set of binary sequences with at most one 1. It turns out that this works,
and we can indeed use the standard topological model on N∞ to show the
independence of LLPO.

Theorem 7.5. LLPO does not hold in the standard model of HAS on N∞.

Proof. We define A : N → ON∞ as follows:

A(n) := {f ∈ N∞ | f(n) = 1}

We can verify that A satisfies the hypotheses of LLPO as follows. For each
n we have

Jn ∈ AK = {f ∈ N∞ | f(n) = 1} ∪ {f ∈ N∞ | f(n) ̸= 1}o

43

However, {f ∈ N∞ | f(n) ̸= 1} is already open, so we can continue.

Jn ∈ AK = {f ∈ N∞ | f(n) = 1} ∪ {f ∈ N∞ | f(n) ̸= 1}
= N∞

We also have for all n,m ∈ N such that n ̸= m

Jn ∈ X ∧m ∈ XK = {f ∈ N∞ | f(n) = 1} ∩ {f ∈ N∞ | f(m) = 1}
= ∅

It only remains to check that

J(∀x 2x /∈ X) ∨ (∀x 2x+ 1 /∈ X)K ̸= ⊤

We have

J∀x 2x /∈ XK = ∩n∈N{f ∈ N∞ | f(2n) = 0}o

= {f ∈ N∞ | ∀n f(2n) = 0}o

Note, however, that if f(n) = 0 for all n, then every neighbourhood of f contains
a function g such that g(2n) = 1 for some n. Hence in this case f /∈ J∀x 2x /∈ XK.
But we similarly have f /∈ J∀x 2x+ 1 /∈ XK, so we are done.

8 Heyting Valued Models of Arithmetic with Fi-
nite Types

8.1 Partial equivalence relations and H-sets

The theories that we are interested in typically have equality relations for each
sort. For such theories it is often conventient to merge the equality relation and
extent predicate together into a single binary relation by the following method.

Suppose that we are given signature (S,O,R) such that R includes a binary
relation symbol = on a sort S. Suppose further we have a Heyting valued model
for that signature over a complete Heyting algebra (H,

∨
,∧,→) and that =

satisfies the axioms for equality.
We extend the signature with a new binary relation symbol ≈ and interpret

it in the Heyting valued model as follows

Ja ≈ bK := E(a) ∧ E(b) ∧ Ja = bK

Note that the extended Heyting valued model satisfies ∀x∀y x ≈ y ↔ x = y,
which follows directly from the way that universal quantifiers are interpreted in
the model. In particular ≈ satisfies all the axioms for equality, since = does.

Futhermore, we can recover the extent predicate from ≈ by the following
equation.

E(a) = Ja ≈ aK

44

We can also see that J≈K has the following properties:

Ja ≈ bK = Jb ≈ aK
Ja ≈ bK ∧ Jb ≈ cK ≤ Ja ≈ cK

We can think of this as a “Heyting valued” version of the following definition.

Definition 8.1. Let X be any set. A partial equivalence relation on X is a
binary relation E ⊆ X ×X satisfying the following conditions:

1. For all x, y ∈ X, E(x, y) if and only if E(y, x) (E is symmetric).

2. For all x, y, z ∈ X, if E(x, y) and E(y, z), then E(x, z) (E is transitive).

We refer sets with H-valued relations satisfying the above as H-sets:

Definition 8.2. Let (H,
∨
,∧,→) be a complete Heyting algebra. An H-set is

a set X, together with a function ≈: X × X → H satisfying the following for
all x, y, z ∈ X:

x ≈ y = y ≈ x

x ≈ y ∧ y ≈ z ≤ x ≈ z

Given an H-set (X,≈) we will write E(x) for x ∈ X as notation for x ≈ x.

8.2 Singletons in Heyting valued models of HAS and H-
sets

In order to motivate an important aspect of the standard model on HAω, we
will first take a closer look at how singleton sets work in HAS.

Recall that a singleton set is one with exactly one element. We formalise
this in HAS as follows:

Definition 8.3. We say that X is a singleton if there exists a number x such
that x ∈ X and for all numbers x, y such that x ∈ X and y ∈ X we have x = y.

If we apply this to the standard Heyting valued model ofHAS on a complete
Heyting algebra (H,

∨
,∧,→), we obtain the following definition.

Definition 8.4. We say A : N → H is a singleton if

1.
∨

n∈NA(n) = ⊤

2. for all n,m such that m ̸= n we have A(n) ∧A(m) = ⊥

Note that given any n ∈ N, we can define a singleton n as follows:

n(m) :=

{
⊤ m = n

⊥ m ̸= n

45

However, it is important to note that in general these are not the only
examples of singletons. Suppose that we have p, q ∈ H such that p ∧ q = ⊥
and p ∨ q = ⊤. In that case we can define a singleton that can take one of two
different values:

A(k) :=

p k = n

q k = m

⊥ k ̸= n and k ̸= m

To give a more concrete example of this we can define the following on Cantor
space:

A(k) :=

{f : N → 2 | f(0) = 0} k = 0

{f : N → 2 | f(0) = 1} k = 1

∅ k > 1

We note however, that these examples only work because Cantor space is
not connected. We can use connectedness to get some more control over what
singletons can look like.

Definition 8.5. We say a complete Heyting algebra (H,
∨
,∧ →) (or more

generally any poset with finite meets and least element) is connected if for all
p, q ∈ H such that p ∨ q = ⊤ and p ∧ q = ⊥ we have p = ⊤ or q = ⊤.

In particular the lattice of open sets of a topological space is connected as a
Heyting algebra if and only if the topological space is connected.

Proposition 8.6. Suppose that (H,
∨
,∧ →) is a connected complete Heyting

algebra. Then for every singleton A : N → H in the standard model of HAS
such that A(n) = ⊥ for n > 1, there exists n ∈ {0, 1} such that JA = nK = ⊤.

Proof. Define p := A(0) and q := A(1). We then have p∨ q = ⊤ and p∧ q = ⊥.
By connectedness, we have either p = ⊤ or q = ⊤. In the former case we have
JA = 0K = ⊤ and in the latter case we have JA = 1K = ⊤.

More generally, we define singletons for H-sets as follows:

Definition 8.7. Suppose (X,≈) is an H-set for a complete Heyting algebra
(H,

∨
,∧,→). We define a new H-set S(X) of singletons as follows. The un-

derlying set of S(X) consists of functions A : X → H. We define a function
E : S(X) → H by

E(A) :=
∨
x∈X

(x ≈ x ∧
∧
y∈X

A(y) ↔ x ≈ y)

We then define the H-valued partial equivalence relation on S(X) by

A ≈ B := E(A) ∧ E(B) ∧
∧
x∈X

A(x) ↔ B(x)

46

Note that given an H-set (X,≈) and a map A : X → H, we can define
a Heyting valued model for the signature with one sort, and a unary relation
symbol A, and a binary relation = satisfying the axioms of reflexivity, symmetry
and transitivity. In this case, E(A) is the interpretation of the formula

∃x∀y A(y) ↔ x = y

We can show, e.g. by giving a proof in intuitionisitic logic, that this is equivalent
to the conjunction of the formulas

∃xA(x) ∀x, y A(x) ∧A(y) → x = y ∀x, y x = y ∧A(x) → A(y)

The first two state that there is exactly one x such that A(x), while the last is
one of the axioms for equality.

For an H-set X, we can define a canonical inclusion i : X → S(X) such that
x ≈ y ≤ i(x) ≈ i(y) for all x, y ∈ X by

i(x)(y) := x ≈ y

Note that we can define a Heyting valued model for a signature with two
sorts, an equality relation on each sort and a unary operation symbol, where
we interpret the two sorts as X and S(X), and i as the the unary operation
symbol. In this case we can show that the following formulas all evaluate to ⊤
in the interpretation of intuitionistic logic. Firstly, the axiom of equality

∀xX ∀yX x = y → ix = iy

Secondly the following two axioms, stating that i is a bijection

∀zS(X) ∃xX z = i(x) ∀xX ∀yX ix = iy → x = y

Also note that the above Heyting valued model also admits an interpretation
for a relation ∈ of arity Y, S(Y), and we can show that the following axioms are
satisfied.

∀z ∀z′ (∀y y ∈ z ↔ y ∈ z′) ↔ z = z′

∀z ∃!y y ∈ z

Definition 8.8. Let (X,≈X) and (Y,≈Y) be H-sets. A functional relation
from X to Y is a function F : X × Y → H such that for all x, x′ ∈ X and
y, y′ ∈ Y we have

x ≈ x′ ∧ y ≈ y′ ∧ F (x, y) ≤ F (x′, y′)

and for all x ∈ X, we have

x ≈ x ≤
∨
y∈Y

y ≈ y ∧ F (x, y)

and for all x ∈ X and y, y′ ∈ Y , we have

x ≈ x ∧ y ≈ y ∧ y′ ≈ y′ ∧ F (x, y) ∧ F (x, y′) ≤ y ≈ y′

47

We can again view these conditions as certain logical formulas evaluating to
⊤ in a Heyting valued model. Namely, we have two axioms of equality

∀x∀x′, x = x′ ∧ F (x, y) → F (x′, y) ∀x ∀y ∀y′ y = y′ ∧ F (x, y) → F (x, y′)

and the following two formulas stating that F is total and single valued.

∀x ∃y F (x, y) ∀x∀y ∀y′ F (x, y) ∧ F (x, y′) → y = y′

Definition 8.9. We say an H-set (Y,≈Y) is weakly complete or Higgs complete
if for every H-set (X,≈X) and every functional relation F from X to Y , there
is a function f : X → Y such that for all x ∈ X we have

x ≈ x ≤ F (x, f(x))

Lemma 8.10. For any H-set (Y,≈Y), S(Y) is weakly complete.

Proof. Suppose we have a functional relation F from (X,≈X) to S(Y). We
define the function f : X → S(Y) by taking f(x) := λy.F (x, i(y)). We need
to check that x ≈ x ≤ f(x) ≈ f(x) and that x ≈ x ≤ F (x, λy.F (x, i(y))) for
all x. In both cases we will use the description of the definitions in terms of
formulas evaluating to ⊤ in a Heyting valued model. First, note that to show
x ≈ x ≤ f(x) ≈ f(x), it suffices to prove in intuitionistic logic that for all x,
f(x) is a singleton. However, we may assume that for every x there exists a
unique z such that z is a singleton and we have F (x, z). Since z is a singleton,
there is a unique y such that z = i(y). But we have now shown f(x) must be
the singleton i(y).

The same argument also shows that x ≈ x ≤ F (x, f(x)). We have shown
in intuitionistic logic that for all x, there is a unique z such that F (x, z) and
a unique y such that z = i(y) = f(x). However, it follows by the axioms of
equality that we have F (x, f(x)).

Definition 8.11. Suppose we are given H-sets (X,≈X) and (Y,≈Y), we define
an H-valued partial equivalence relation ≈X×Y on X × Y as follows:

(x, y) ≈X×Y (x′, y′) := x ≈X x′ ∧ y ≈Y y′

Definition 8.12. Suppose we are given H-sets (X,≈X) and (Y,≈Y), we define
an H-valued partial equivalence relation ≈Y X on Y X as follows:

f ≈ g :=
∧

x,x′∈X

x ≈ x′ → f(x) ≈ g(x′)

Note that we can define a Heyting valued model on a signature with two three
sorts X,Y, Y X and a term Ap of sort Y X , X → Y , where we interpret each sort
as the corresponding set of the same name, and Ap as function application. In
this case the following formula evaluates to ⊤ in the Heyting valued model:

∀f, g (∀x fx = gx) ↔ f = g

48

Lemma 8.13. If (Y,≈Y) is a weakly complete H-set and (X,≈X) is any H-set,
then (Y X ,≈) is weakly complete.

Proof. We need to check that given a functional relation F from anH-set (Z,≈Z

to (Y X ,≈) we can find f : Z → Y X such that for all z, z ≈ z ≤ F (z, f(z)).
We define a new functional relation G from Z ×X to Y by G((z, x), y) :=∨

h:X→Y F (z, h)∧h(x) ≈Y y. We will first check that G is a functional relation.
We can then deduce that there exists g : Z×X → Y such that for all x ∈ X and
z ∈ Z (z, x) ≈ (z, x) ≤ G((z, x), g(z, x)). We then define f : Z → Y X defined
by f(z)(x) := g(z, x) and check that for all x ∈ X we have x ≈ x ≤ F (x, f(x)).

We will check both of the statements above again using the descriptions in
terms of formulas evaluating to ⊤ in a Heyting valued model. We first need
to prove that ∀(z, x)∃!y G((x, z), y). However, we can make the assumption
∀z ∃!f F (x, f) by the definition of functional relation, and we can make the
assumption ∀f ∀x∃!y f(x) = y by the definition of the equality relation for Y X .
From these assumptions it follows that ∀(z, x)∃!y G((x, z), y).

For the second statement we need to check, it suffices to prove in intuition-
isitic logic that for all z we have F (z, f(z)). We may assume that there exists
h of sort Y X such that F (z, h). We can then show that for all x of sort X
we have g(z, x) = h(x). Then since the equality relation on Y X was chosen to
satisfy extensionality, we can deduce f(z) = h, and thereby deduce F (z, f(z)),
as required.

8.3 Standard Heyting valued models of HAω

Fix a complete Heyting algebra (H,
∨
,∧,→). We will define the standard Heyt-

ing valued model of HAω on H in such a way that each function sort σ → τ
behaves similarly to functional relations in the standard model of HAS. This
will ensure that the models are non trivial. It will also have the side effect that
the models satisfy both function extensionality and the axiom of unique choice.

We will ensure that each sort of HAω is interpreted as a weakly complete
H-set. We will then use the H-valued partial equivalence relation on the H-set
to define both the extent and the equality relation in the Heyting valued model.

8.3.1 The domains of the model, extent and equality

We define MN to be S(N), with partial equivalence relation defined as in defi-
nition 8.7.

Given finite types σ and τ , we define Mσ×τ to be Mσ ×Mτ , with partial
equivalence relation defined as in definition 8.11.

We define Mσ→τ to be the set of functions from Mσ to Mτ , with partial
equivalence relation defined as in definition 8.12. Note that from the definition
of the partial equivalence relation, we can see that function extensionality has
to hold in the model.

We can also see that unique choice holds, as follows. Let φ be any formula.
We want to show ∀xσ ∃!yτ φ(x, y) holds in the model. Suppose that zρ1

1 , . . . , z
ρn
n

49

is a list of the free variables occuring in φ not equal to x and y.

(c1, . . . , cn) ≈ (c′1, . . . , c
′
n) := c1 ≈ c′1 ∧ . . . ∧ cn ≈ c′n∧

J∀xσ ∃!yτ φ(x, y, c1, . . . , cn)K

Finally, note that we have a functional relation from Z ×Mσ to Mτ , which is
just JφK, viewed as a map Z × Mσ × Mτ → H. Since we ensured that Mτ

is weakly complete, this gives us a function from Z × Mσ to Mτ . Given any
element (c1, . . . , cn) of Z, we can apply the function above to them, to get a
function Mσ → Mτ , which is what we needed to find an element f of Mσ→τ .
By the way that we defined this function, we do indeed have the inequality
below, confirming that f does witness unique choice holding in the model.

E(c1) ∧ . . . ∧ E(cn) ∧ J∀x ∃!yφK ≤ E(f) ∧ J∀xφ(x, f(x))K

8.3.2 The application operation

We now need to show now to interpret the operator symbols. We define JApK :
Mσ→τ×Mσ → Mτ to be the external function application map. It is important
to note that we know this is a well defined function, since we implemented
Mσ→τ so that its underlying set is just the set of functions from Mσ to Mτ .
We also need to check that for all f : Mσ → Mτ and all x ∈ Mσ we have
f ≈ f ∧ x ≈ x ≤ f(x) ≈ f(x) to satisfy the definition of Heyting valued model.
However, this is ensured by definition 8.12. Moreover, given f, f ′ : Mσ → Mτ

and x, x′ ∈ Mσ we have f ≈ f ′ ∧ x ≈ x′ ≤ f(x) ≈ f ′(x′), which implies the
above, but also shows that the Heyting valued model satisfies the axioms of
equality f = f ′ → Ap(f, x) = Ap(f ′, x) and x = x′ → Ap(f, x) = Ap(f, x′).

8.3.3 Constant symbols

We interpret each constant symbol p,pi,k, s as the corresponding “external”
version. For example, given sorts σ and τ , we need to take k to be a global
element ofMσ→(τ→σ). This means it needs to be a functionMσ → Mτ→σ. But
Mτ→σ is itself the set of functions from Mτ to Mσ. Hence we take JkK to be
the function that takes an element a of Mσ and returns the function constantly
equal to x. This needs to be a global element, i.e. such that E(JkK) = ⊤.
This amounts to showing that a ≈ a′ ≤ JkK(a) ≈ JkK(a′). However, this is the
same as showing a ≈ a′ ≤

∧
b∈Mσ

JkK(a)(b) ≈ JkK(a′)(b). Since JkK(a)(b) = a
for all a and b, this is easy to show. We also need to check that this does
satisfy the axiom for k, namely ∀x∀y kxy = x. This amounts to showing
a ≈ a ∧ b ≈ b ≤ JkKab ≈ a, which again follows directly from the definition of
JkK.

We can argue similarly for the other constants p,pi, s.
This only leaves the constant symbols relating directly to numbers, namely

0, S and the recursor r. We take J0K to be i(0). We need to take JSK to be
a function S(N) → S(N). One way to do this is to note that it suffices to
find a functional relation from S(N) → S(N). However, by composing with the

50

function i : N → S(N) and its inverse, which is a functional relation from S(N)
to N, it suffices to find a function from N to N, which we can take to just be
the external successor function. However, we can also explicitly describe JSK(A)
for A ∈ S(N). It is simply the function N → H defined by λn.A(S(n)). The
induction axioms are proved using external induction in a similar way to the
standard Heyting valued model for HAS.

Defining JrK amounts to finding a function S(N) → Mσ, given an element
a of Mσ and a function f : Mσ × S(N) → Mσ. As before, we observe that
it suffices to define a function g from N → Mσ. We define g by (external)
recursion as g(0) = a, and g(Sn) = f(g(n), i(n)). It is clear that this satisfies
the relavant equations by definition.

By the above reasoning we can deduce the soundness theorem for standard
Heyting valued models of HAω:

Theorem 8.14. The above model satisfies the axioms of HAω, as well as func-
tion extensionality and unique choice.

9 Independence of choice and omiscience prin-
ciples over HAω

9.1 The topological model over Cantor space

Theorem 9.1. Markov’s principle does not hold in the standard topological
model of HAω on Cantor space.

Proof. We first construct a global element of the sort N → N . It suffices to find
a function g : N → S(N). So for each n, we need g(n) to be a function from N
to the open subsets of 2N. We take this to be the “generic” function

g(n)(m) := {f ∈ 2N | f(n) = m}

We can then calculate

J¬∀n g(n) = 0K = (2N \ J∀n g(n) = 0K)o

= (2N \ (
⋂
n∈N

Jg(n) = 0K)o)o

= (2N \ {λn.0}o)o

= (2N \ ∅)o

= 2N

However, we also have

J∃n g(n) = 1K = {f ∈ 2N | ∃n f(n) = 1}
= 2N \ {λn.0}

51

Hence

J¬∀n g(n) = 0 → ∃n g(n) = 1K = (2N \ {λn.0})o

= 2N \ {λn.0}
̸= 2N

Corollary 9.2. LPO does not hold in the standard topological model of HAω

on Cantor space.

9.2 Independence of countable choice

To show that the axiom of countable choice does not hold in HAω, we first
consider a weaker version of the result, that has a simpler proof. We extend the
signature of HAω in include a binary relation symbol A of sort N,N . Write
HA+

ω for the theory with the same axioms as HAω over the larger signature.
We note that the axiom scheme of countable choice now includes some ex-

tra formulas, that do not occur for countable choice over HAω, namely those
formulas where A occurs somewhere. In particular ACN,N now includes the
following formula.

∀xN ∃yN Axy → ∃fN→N ∀xN Axf(x)

Theorem 9.3. ACN,N is not provable in HA+
ω .

Proof. We work in the standard topological model of HAω over IN.
In order to make this a Heyting valued model over the extended signature,

we need to show how to interpret the binary relation symbol A. We define it as
follows:

JAnmK :=

{f : N → I | f(n) = 0 or f(n) = 1} m = 0

{f : N → I | f(n) = 2 or f(n) = 1} m = 1

∅ otherwise

We clearly have
J∀x∃y AxyK = ⊤

Hence, if ACN,N held, we would have an element f of N → N such that

λn.1 ∈ E(f) ∧ J∀xAxf(x)K

Hence for some connected open neighbourhood U of λn.1, we would have
U ⊆ E(f) ∩ J∀xAxf(x)K.

It follows that for all n, we have Jf(n) = 0 ∨ f(n) = 1K ⊆ U , and Jf(n) =
0 ∧ f(n) = 1K ∩ U = ⊥. Hence U ⊆ Jf(n) = 0K ∪ Jf(n) = 1K and Jf(n) =
0K∩ Jf(n) = 1K = ∅. Since U is connected we can deduce that for each n, either

52

U ⊆ Jf(n) = 0K or U ⊆ Jf(n) = 1K. That is, f has to correspond to an actual
function N → 2 in the metatheory where we are working.

To get a contradiction from the assumption, we need to show

U ⊈ J∀xAxf(x)K

We will show in fact that

λn.1 /∈ J∀xAxf(x)K

Suppose that λn.1 ∈ J∀xAxf(x)K. In this case it would have a basic open
neighbourhood Uσ ⊆ J∀xAxf(x)K for some finite sequence σ of elements of I.
Let n be any number greater than the length of σ.

We assume that Jf(n) = 0K = ⊤, with a similar proof applying for the case
Jf(n) = 1K = ⊤.

Note that we can easily define a function g : N → I such that g(i) = σ(i)
for i < |σ| and such that g(n) = 2. Since Jf(n) = 0K, we have g ∈ Jf(n) = 0K.
But since Jf(n) = 0K ≤ JAn0K, this implies g ∈ JAn0K, which contradicts the
definition of JAK.

We will now show that ACN,N also fails for HAω itself. The rough idea is
to combine the above proof for HA+

ω with an idea based on the omniscience
principle LLPO. LLPO says that given a binary sequence f with at most one
1, either f(2n) = 0 for all n or f(2n + 1) = 0. However, if f(n) = 0 for all n,
then both cases hold, and there is no canonical way to choose one. This leads
us to consider the following instance of countable choice. Suppose we have a
countable family of binary sequences fm : N → 2 for m ∈ N and for each m
there exists i ∈ {0, 1} such that for all n, fm(2n + i) = 0. Countable choice
would imply there is a function g : N → 2 such that for all m and for all n,
fm(2n+ g(m)) = 0. We will show that this is not provable in HAω.

The proof also uses some less precise general rules of thumb:

1. If we want to find a topological model where an implication does not hold,
it is often helpful to consider a topological space that “looks similar” to
the antecedent of the implication.

2. If we want to combine the ideas of two constructions together, it can be
useful to combine the topological spaces together in a very simple way,
such as binary product.

Theorem 9.4. The following instance of countable choice is not provable in
HAω.

∀fN×N→N ∀mN ∃iN (i = 0 ∨ i = 1) ∧ ∀nN f(m, 2n+ i) = 0 →
∃gN→N ∀mN (g(m) = 0 ∨ g(m) = 1) ∧ ∀nN f(m, 2n+ g(m)) = 0

53

Proof. We take X to be the topological space defined as the following subspace
of 2N×N × IN.

X := {(h, k) ∈ 2N×N × IN | ∀mk(m) ≥ 0 → ∀nh(m, 2n) = 0 ∧
k(m) ≥ 2 → ∀nh(m, 2n+ 1) = 0}

We work over the standard topological model of HAω on X and define a
global element f of MN×N→N as follows.

Jf(m,n) = iK := {(h, k) ∈ X | h(n,m) = i}

Note that the above does give a functional relation from MN ×MN to MN .
In particular we can see that each Jf(m,n) = iK is an open set, since it is the
intersection of X with an open set of 2N×N×IN. Hence there is a global element
f of MN×N→N satisfying it.

Furthermore, we have the following equalities for all m

J∀n f(m, 2n) = 0K = {(h, k) ∈ X | k(m) ≥ 0}
= X ∩ 2N×N × {k ∈ IN | k(m) ≥ 0}

J∀n f(m, 2n+ 1) = 0K = {(h, k) ∈ X | k(m) ≥ 2}
= X ∩ 2N×N × {k ∈ IN | k(m) ≥ 2}

However, we can now show there is no element g such that

(λn.λm.0, λn.1) ∈ J∀mN (g(m) = 0 ∨ g(m) = 1) ∧ ∀nN f(m, 2n+ g(m)) = 0K

by a similar argument to theorem 9.3.

10 Completeness and existence properties

10.1 Completeness theorem for Heyting valued models

In logic, it is common to consider not just soundness theorems (as we have seen
so far) but converse versions, known as completeness theorems, where we show
that if something holds in every model, then it is provable. For the kinds of
model we commonly study in intuitionistic logic, we can often do something
stronger: for a given theory T , we can find a single canonical model such that
a closed formula φ is provable in T if and only if it holds in the model. In this
section we will see how this works for Heyting valued models on a complete
Heyting algebra.

The essential idea is to take the Heyting algebra to be the Lindenbaum-
Tarski algebra of a theory T , take the domains MS to be terms of sort S and
then show JφK = [φ]. However, there are a few issues to deal with to make this
precise.

The first problem is that we have only defined Heyting valued model for
complete Heyting algebras and the Lindenbaum-Tarski algebra is typically not
complete. To deal with this we use a construction called Dedekind-MacNeille
completion.

54

Lemma 10.1. Let (P,∧,∨,⊤,⊥,→) be a Heyting algebra (not necessarily com-
plete). Then we can construct a complete Heyting algebra (P ,

∧
,→) and a func-

tion ι : P → P such that ι preserves Heyting implication, and any meets and
joins that already exist in P .

Proof. We define an c-ideal to be a set U ⊆ P satisfying the following conditions:

1. ⊥ ∈ U

2. If p ∈ U and q ≤ p, then q ∈ U (i.e. U is downwards closed)

3. If S ⊆ P and
∨
S already exists in P , then

∨
S ∈ U

We take P to be the set of all c-ideals, ordered by inclusion. We define ι(p) to
be the downwards closure of {p}.

Note that P is a complete Heyting algebra. For example, given c-ideals U
and V , we define U → V to be

U → V := {p ∈ P | ∀q ≤ p q ∈ U → q ∈ V }

We can see in particular that {p}≤ → {q}≤ = {p→ q}≤.
Given S ⊆ P , we can define the join of S by∨

S :=
{∨

X | X ⊆
⋃
S and

∨
X exists

}
One again note that the definition of c-ideal was chosen precisely to ensure that
given S ⊆ P such that

∨
S exists, we have∨

ι(S) =
{∨

S
}≤

This precisely ensures that any joins that exist in P are preserved by ι.

Now fix a theory T over a signature (S,O,R). If L is the Lindenbaum-Tarski
algebra on T , we will define a Heyting valued model on L.

Given a sort S ∈ S, we define MS to be the set of all terms of sort S. It is
an important point that this really means all terms, not just closed terms. In
particular, for the completeness proof to work correctly at quantifiers we will
need to use the fact that free variables of sort S are included in MS . We define
E(t) := ⊤, i.e. we construct a global model.

From this definition, it is clear that for each operator symbol O ∈ O, we
can define JOK(t1, . . . , tn) simply to be Ot1 . . . tn. Similarly, for each relation
symbol R ∈ R, we can define JRK(t1, . . . , tn) to be ι([Rt1 . . . tn]) (that is, we
send the formula Rt1 . . . tn to the correspond equivalence class [Rt1 . . . tn] in the
Lindenbaum-Tarski algebra, and then include it into the Dedekind-MacNeille
completion with ι.

Theorem 10.2. For the Heyting valued model defined above, we have for all
formulas φ and all variable assigments σ,

JφKσ = ι([φ[σ]])

Proof. This is proved by induction on formulas.

55

10.2 Existence properties in logic

It is a key characteristic of constructive mathematics that proving statements
of the form ∃xφ(x) should require something more than the same statement in
classical logic. Namely, we should only be able to prove this if we can explicitly
find a witness. We formalise this idea through existence properties.

Definition 10.3. A theory T satisfies the disjunction property if whenever
T ⊢ φ ∨ ψ, either T ⊢ φ or T ⊢ ψ.

Definition 10.4. A theory T satisfies the term existence property if whenever
T ⊢ ∃xφ(x), there is a closed term t such that T ⊢ φ(t).

Definition 10.5. A theory T satisfies the definable existence property if when-
ever φ is a formula whose only free variable is x and T ⊢ ∃xφ(x) there is a
formula ψ, whose only free variable is x such that T ⊢ ∃!x (φ(x) ∧ ψ(x)).

Note that the term existence property implies the definable existence prop-
erty, and if a theory T satisfies the definable existence property, we can extend
it to a theory with the term existence property by adding a constant symbol
cφ and axiom φ(cφ) whenever φ is a formula whose only free variable is x such
that T ⊢ ∃!xφ(x).

Definition 10.6. Suppose T has a sort N together with a constant symbol 0
of sort N and a unary operation symbol S of sort N → N . For each natural
number n ∈ N, we define a term n of sort N by induction:

0 := 0

n+ 1 := Sn

We say T satisfies the numerical existence property if whenever T ⊢ ∃xN φ(x),
there exists n ∈ N such that T ⊢ φ(n).

Although we only need 0 and S in the signature for the above definition to
make sense, in practice we only consider theories that are extensions of HA, i.e.
every theorem of HA is also provable in T .

The disjunction and numerical existence property hold for all theories widely
viewed as foundations for constructive mathematics. On the other hand, they
can never hold for theories used as foundations of mathematics based on classical
logic. We can see this using an argument based on Gödel’s incompleteness theo-
rem. If T is a theory in classical logic where we can interpret Peano arithmetic,
then we can formalise the statement “T is either consistent or not consistent”
inside T , and prove it as a direct instance of the law of excluded middle. How-
ever, by Gödel’s result we can show that T does not prove either of the disjuncts
(as long as T is consistent and recursively axiomatisable).

The status of the definable existence property is less clear. There are exam-
ples of theories in classical logic that satisfy it, including Peano arithmetic and
any set theory extending ZF + V = OD. There are also examples of theories
used in constructive mathematics that do not satisfy the definable existence
property, such as the set theories IZF and CZF

56

10.3 Numerical existence property for Heyting arithmetic

We now show a simple technique for proving that a theory has the numerical
existence property. To illustrate the idea, we will just show the result for HA.
However, this is a robust argument that can be generalised and adapted to
diverse theories, including for example HAS and HAω.

Definition 10.7. Given a complete Heyting algebra (P,
∨
,∧,→), we define the

connectification P ∗ to have underlying set P ⨿{⊤∗} with the ordering ≤ defined
so that ⊤∗ is the top element of the poset and otherwise the ordering agrees
with that of P .

Note that P ∗ is itself a complete Heyting algebra, and it is connected in the
following very strong sense.

Lemma 10.8. Suppose that S ⊆ P ∗ is such that
∨
S = ⊤∗. Then for some

p ∈ S we have p = ⊤∗.

We write ⊤P for the “old” top element, which is now strictly below the new
top. We make use of the following key lemma, whose proof is left as an exercise.

Lemma 10.9. The map π : P ∗ → P sending p to p ∧ ⊤P preserves Heyting
implication and all meets and joins.

Theorem 10.10. HA satisfies the disjunction property and numerical existence
property.

Proof. We take P to be the Dedekind MacNeille completion of the Lindenbaum-
Tarski algebra for HA. We then define a Heyting valued model over the con-
nectification P ∗ as follows.

We defineM to be the set of all terms, including terms with free variables, as
we did for the completeness theorem. However, we define a non trivial existence
predicate as follows:

E(t) :=

{
⊤∗ if t = n for some n ∈ N
⊤P otherwise

If we write JφKPσ for the interpretation of φ in the canontical model and JφK∗σ
in the new model on P ∗ defined above, then by lemma 10.9 and induction on
formulas, we have

JφKPσ = JφK∗σ ∧ ⊤P

Now assume that HA ⊢ ∃nφ(n). One can show that the axioms of HA
hold in the model (exercise). Hence by the soundness theorem for intuitionistic
logic, we have (for any variable assignment σ)

J∃nφK∗σ = ⊤∗

By lemma 10.8 and the interpretation of existential quantifiers it follows that
there exists a term t such that

E(t) ∧ Jφ(t)K∗σ = ⊤∗

57

However, it follows that E(t) = ⊤∗, and therefore that t = n for some n ∈ N.
Now by the observation above, we can deduce

Jφ(n)KPσ = ⊤P

However, finally we can apply the completeness theorem to showHA ⊢ φ(n),
as required.

11 Partial Combinatory Algebras

So far we have considered models of intuitionistic logic based on topology and
more generally on complete Heyting algebras. The idea behind realizability is to
instead work with an abstract notion of computation, called partial combinatory
algebra (pca), which is the topic of this section.

11.1 Some notation and terminology for partial functions

The “computable functions” of a pca will be in particular partial functions, so
we will first define some notation and terminology that will help us to deal with
partial functions better.

Definition 11.1. Let X and Y be sets. A partial function from X to Y is a
subset f of X×Y such that whenever (x, y) ∈ f and (x, y′) ∈ f we have y = y′.
We write f : X ⇁ Y .

We write f(x) ↓ to mean that there exists y ∈ Y (necessarily unique) such
that (x, y) ∈ f . We say f is defined at x. We write f(x) = y to mean (x, y) ∈ f .
Note in particular that writing f(x) = y implicitly implies f(x) ↓. However, we
often write out f(x) ↓ explicitly anyway to draw attention to the fact that f is
defined at x.

Suppose that f : X ⇁ Y and g : Z ⇁ Y . For x ∈ X and z ∈ Z, we write
f(x) ≃ g(z) to mean that f(x) ↓ if and only if g(z) ↓, and that if they are
defined, then f(x) = g(z).

In particular, if X is a set with one element, say ∗, then partial functions
X ⇁ Y are just subsets of singletons of Y . In this case f(∗) ↓ means the
subsingleton is inhabited, and f(∗) = y means the subsingleton contains the
element y (and so is an actual singleton).

Also note that we have the following propositions.

Proposition 11.2. Any function X → Y is in particular a partial function.

Proposition 11.3. Given partial functions f : X ⇁ Y and g : Y ⇁ Z, we
define the composition g ◦ f to be the partial function X ⇁ Z, which is defined
at x if and only if f(x) ↓ and g(f(x)) ↓, and in this case (g ◦ f)(x) = g(f(x)).

58

11.2 Partial applicative structures

Before defining partial combinatory algebras, we will first define a weaker notion,
partial applicative structure.

Definition 11.4. A partial applicative structure (pas) is a set A, together with
a partial binary operation · : A×A⇁ A.

Definition 11.5. Let A be a pas. We say a partial function f : A ⇁ A is
representable if there exists a ∈ A such that for all b ∈ A we have f(b) ≃ a · b.

The intuitive idea behind representable partial functions is programs-as-data.
The elements of A are mathematical objects that we wish to discuss (e.g. we
can take A = N or A = NN). We think of representable functions as programs
that operate on this data. By definition, every representable function can be
“coded” or “represented” as an element of A itself.

Example 11.6. Any total binary operation is in particular a partial binary
operation. Applying this to N with the binary operation +, we get that the
representable partial function N ⇁ N are precisely the total functions of the
form λm.m+ n for each n ∈ N.

Example 11.7. Note that we can define an injective function i from closed
terms of HAω of sort N → N to N. Given a closed term t of sort N → N ,
we write ⌜t⌝ for the corresponding element of N. Define the partial operation
by setting n · m = k when n = ⌜t⌝ and HAω ⊢ tm = k (and otherwise it
is undefined). An encoding of terms as natural numbers in this way is often
referred to as a Gödelnumbering

Definition 11.8. Let A be a partial applicative structure and assume that
we have a supply of free variables x1, x2, The set of A-terms is defined
inductively as follows.

1. Every free variable xi is an A-term

2. Every element of A is an A-term

3. If s and t are A-terms, then so is s · t

Definition 11.9. Given an A-term t and a list of free variables x1, . . . , xn
including all those that occur free in t, we define a partial function |t| : An ⇁ A
by induction on terms.

1. |xi| is a total function, defined as |xi|(a1, . . . , an) := ai

2. |a| is a total function, defined as |a|(a1, . . . , an) := a

3. We define |s · t|(a1, . . . , an) to be defined only when |s|(a1, . . . , an) and
|t|(a1, . . . , an) are defined, and in this case

|s · t|(a1, . . . , an) ≃ |s|(a1, . . . , an) · |t|(a1, . . . , an)

59

In particular if anA-term is closed (contains no free variables), then it defines
a partial function on a set with one element.

We will deal with A-terms quite a lot, so we will use some notational con-
ventions to make them easier to write:

1. We will often omit the binary operator, writing s · t simply as st.

2. Write · left associatively. That is, we write rst to mean (rs)t.

3. We will often write |t| simply as t, omitting the bars.

4. We write substitution into A-terms the same way as substitution of terms
in intuitionistic logic (i.e. t[x/s] where s is an A-term).

5. If t is a closed term and t ↓, then there is a unique element a of A such
that t ≃ a. We say t denotes a.

11.3 Partial combinatory algebras

Definition 11.10. A partial combinatory algebra (pca) is a pas (A, ·) such that
there are k, s ∈ A such that for all a, b, c ∈ A,

1. ka ↓ and kab = a (in particular kab is always defined).

2. sa ↓, sab ↓ and
sabc ≃ ac(bc)

We say a partial combinatory algebra is non-trivial if s ̸= k.

Similarly to the definition of HAω, we can use k to generate constant func-
tions and s to define the “dependent composition” of two functions. In partic-
ular, we have the following proposition.

Proposition 11.11. Let A be a pca. Then every constant function A → A is
representable. If partial functions f : A ⇁ A and g : A ⇁ A are representable,
then so is g◦f . The identity function A → A is also representable (by i := skk).

Similarly to in HAω we can prove a λ-abstraction lemma. Since we are
now working with partial functions, we phrase the lemma a bit differently. It is
particularly important that λx.t is always a defined term, even if (for example)
t is already closed and not defined.

Lemma 11.12. Let A be a pca, and t an A-term whose only free variable are
included in the list x, y1, . . . , yn. Then there is an A-term λx.t such that all the
free variables of λx.t are included in the list y1, . . . , yn, for all b1, . . . , bn ∈ A,
we have (λx.t)(b1, . . . , bn) ↓ and for all a, b1, . . . , bn ∈ A we have

(λx.t)(b1, . . . , bn)a ≃ t(a, b1, . . . , bn)

Proof. We define λx.t and check that it works by induction on terms.

60

1. If t = x, we define λx.t to be i

2. If t = yi, we define λx.t to be kyi

3. If t = a for a ∈ A, we define λx.t to be ka

4. If t = r · s, we define λx.t to be s(λx.r)(λx.s)

We can use λ-abstraction to define y combinators. This construction can
only be carried out in “untyped” settings, such as in pcas. It does not work for
HAω, for example. This is not the most common definition of y-combinator.
It is however the most appropriate definition when working with a partially
defined application operator, and therefore the only definition we will consider
in this course.

Theorem 11.13. For any pca, A, there is an element y ∈ A with the following
properties. For all a ∈ A, we have ya ↓, and for all b ∈ A, we have

yab ≃ a(ya)b

Proof. We first define
t := λx.λy.λz.y(xx)z

We then define y to be the closed term tt.
First note that we can calculate

y = tt

= (λx.λy.λz.y(xxy)z)t

≃ λy.λz.y(tty)z

In particular, we can see that y is defined, since λ-abstraction is always defined
and so it does denote an element of A.

Now given a ∈ A, we have

ya ≃ λz.a(tty)z

Again using the fact that λ-abstraction is always defined, we can see in particular
that ya ↓.

Finally for any b ∈ A, we have

yab ≃ a(tta)b

= a(ya)b

Neither of the two examples of partial applicative structures we have seen are
pcas. For example 11.6 it is clear that constant functions are not representable,
for example. It is harder to see why example 11.7 is not a pca. For now we just
remark that the main difficultly is that the s combinator of HAω is a typed
operation of sort (N → N → N) → (N → N) → N → N . However, to get a
pca we would need a term of sort N → N that takes Gödelnumbers as input,
which turns out to be more difficult.

61

11.4 Two examples of term pcas

To get some non trivial examples of pcas, we will use term models. We first
define what we mean by term.

Definition 11.14. We define the set T of pca-terms to be inductively defined
as follows:

1. k is a pca-term

2. s is a pca-term

3. If s and t are pca-terms, then so is s · t

We define our first term model as follows. Let ∼ be the smallest equivalence
relation on T satisfying the following conditions for all r, s, t ∈ T :

1. krs ∼ r

2. srst ∼ rt(st)

3. If r ∼ s, then r · t ∼ s · t

4. If s ∼ t, then r · s ∼ r · t

Example 11.15. We can give T /∼ the structure of a pca, where we define
[r] · [s] := [r · s], k := [k] and s := [s].

The preceding example has the advantage of being simple. However, it is
difficult to say anything concrete about it, even to show it is non trivial.

We therefore consider a second term model, which has a bit more complicated
definition, but is easier to describe concretely. It also has the advantage of being
easy to implement on electronic computers, especially so with the help of modern
programming languages with a built in notion of inductively defined type, such
as Haskell.

We first define a subset of terms that we refer to as normal.

Definition 11.16. We say a term t is reducible if it satisfies any of the conditions
below:

1. t = krs for some terms r and s

2. t = srsu for some terms r, s and t

3. t = rs, for some terms r and s where either r or s is reducible

We say a term t is normal if it is not reducible. We write the set of all
normal terms as T0.

Definition 11.17. We define a ternary relation on terms, natural numbers and
normal terms. Given a term t, number n and normal form s, we will write the
relation as t →n s and say t reduces to s at stage n. We define the relation as
the smallest one satisfying the conditions below.

62

1. If t is normal, then t→n t.

2. If either t or r is reducible and t →n t
′ and r →n r

′ and t′r′ →n v, then
tr →n v (note that t′r′ is either normal or one of the two remaining cases
below).

3. If t and r are normal, then ktr →n t.

4. If t, r, u and v are normal, then stru→n+1 v whenever tu(ru) →n v.

Note that we have chosen the definition to ensure we have the following
lemma.

Lemma 11.18. Reducibility at n satisfies the following statements.

1. If t→n t
′, then t→n+1 t

′.

2. If t→n t
′ and t→n t

′′, then t′ = t′′.

3. If t is normal, then t→n t for all n.

We can now give T0 the structure of a pas by defining t · s to be r if there
exists n such that t · s→n r (and t · s is undefined if there is no such n).

Theorem 11.19. T0 with the above application operator is a pca.

Proof. By lemma 11.18 we can see that the above definition does give a well
defined partial binary operator ·. It remains to check the axioms for k and s.
First note that if r and t are normal, then so are kr, and srt, so we do have
kr ↓ and srt ↓. We clearly have krt = r. It only remains to check srtu ≃ ru(tu)
for normal forms r, t, u. However, by definition srtu →n+1 v for some normal
form v if and only if ru(tu) →n v. We can see from this that srtu ↓ if and
only if ru(tu) ↓, and when they are defined we clearly have srtu = ru(tu), as
required.

11.5 Extended pcas and computable functions

We now have a non trivial example of a pca, giving us some kind of notion
of computation. However, at the moment the only thing we can “compute” is
normal terms. For this reason, we also consider a variant of the definition of
partial combinatory algebra that allows us to encode numbers as a subset of the
pca.

Definition 11.20. An extended pca, or pca+ is a partial combinatory algebra
(A, ·) with the additional constants p, p0, p1, 0, S, P , and d, satisfying the
axioms below. Given n ∈ N we will write n for the element of A defined
recursively by 0 := 0 and n+ 1 := Sn.

1. For all a, b ∈ A, pab ↓, p0(pab) ≃ a and p1(pab) ≃ b

2. Sn ↓ and Sn ̸= 0 for any n ∈ N

63

3. For all n ∈ N, P (Sn) = n

4. For all n,m ∈ N and all a, b ∈ A, dnmab = a if n = m and dnmab = b if
n ̸= m

In fact, any non trivial pca can be made into an extended pca. We won’t
give full details here, but we give some definitions to illustrate how the proof
works. First note that we can define p, p0 and p1 with the correct properties,
using the λ-abstraction lemma.

p := λx.λy.λz.zxy p0 := λw.w(λx.λy.x) p1 := λw.w(λx.λy.y)

We then implement the boolean values ⊥ and ⊤ with the properties that ⊥ab =
a and ⊤ab = b:

⊤ := k ⊥ := λx.λy.y (= ki)

We use the above to define an encoding of the natural numbers:

0 := p⊥⊥ S := λx.p⊤x

With these definitions it is clear we can define P := p1, and we can define a
simpler version of d, that decides whether or not a number is equal to 0, as
d0 := p0. Note that by repeatedly using d0 we can find a ∈ A such that for all
b ∈ A, and all n,m ∈ N,

abnm =

⊤ n = m = 0

⊥ (n = 0 ∧m ̸= 0) ∨ (n ̸= 0 ∧m = 0)

λx.λy.b(Pn)(Pm)xy otherwise

We can then define d := ya.
However, there are often many ways to choose the pca+ structure, and it can

be useful to ensure the structure is simple to describe explicitly. To get a term
model with a simple description of the pca+ structure we adjust the definition
of T0 from the previous section by explicitly adding new constants. Namely we
define terms as follows:

Definition 11.21. We inductively define the set T + of pca+-terms by

1. k is a pca+-term

2. s is a pca+-term

3. If s and t are pca+-terms, then so is s · t

4. 0 is a pca+-term

5. S is a pca+-term

6. P is a pca+-term

7. d is pca+-term

64

Definition 11.22. We say a term t is reducible if it satisfies any of the conditions
below:

1. t = krs for some terms r and s

2. t = srsu for some terms r, s and t

3. t = rs, for some terms r and s where either r or s is reducible

4. t = p0(prs) or t = p1(prs) for some terms r and s

5. t = P (Sn) for some n ∈ N

6. t = dnmrs for some n,m ∈ N and terms r and s

We say a term t is normal if it is not reducible. We write the set of all
normal terms as T +

0 .

We adjust the definition of reducibility at stage n (definition 11.17) by adding
the following clauses:

1. If t and s are normal terms, then p0(pts) →n t and p1(pts) →n s

2. If m ∈ N, then P (Sm) →n m

3. If m, l ∈ N and t, s are normal terms, then dmlts →n t if m = l and
dmlts→n s if m ̸= l

As before, for normal terms t and s, we define t · s to be r if there exists
n ∈ N such that t ·s→n r (and t ·s is undefined if there is no such n). As before,
this gives us a pca, and we can make this into an extended pca by interpreting
each constant as “itself.”

Definition 11.23. We say a partial function N⇁ N is computable relative to a
pca+ (A, ·, s,k,p,p0,p1, 0, S, P,d) if there exists a ∈ A such that the following
holds. For all n ∈ N, if f(n) ↓, then tn ↓ and tn = f(n), and whenever there
exists m ∈ N such that tn = m, we have f(n) ↓ with f(n) = m.

In fact if a partial function N ⇁ N is computable relative to T +
0 , then it is

computable relative to any extended pca, justifying the following definition.

Definition 11.24. We refer to partial functions N ⇁ N that are computable
relative to T +

0 simply as computable.

The class of computable partial functions can be defined many different
ways. This is the main definition we will see in this course, but in other courses
you may have seen definitions in terms of abstract versions of mechanical or
electronic computers, such as Turing machines or register machines, definitions
in terms of definability in the λ-calculus or combinatory logic, or the definition
of recursive functions. In general we will follow the rule of thumb referred to
as the Church-Turing thesis,6 which states that any time we can write down a
precise but possibly informally stated procedure for finding a number, we could
implement it as a computable function in the formal sense.

6Not to be confused with the axiom Church’s thesis that we will also study in this course.

65

12 Realizability

12.1 Realizability models for intuitionistic logic

A classic way to motivate realizability is formalise an intuitive idea known as
the Brouwer-Heyting-Kolmogorov, or BHK, interpretation of intuitionistic logic.
The BHK interpretation asserts for each logical connective what it means to
constructively justify the truth of formulas built from that connective. The
most important cases to consider are disjunction, existential quantifiers and
implication. To assert a disjunction φ ∨ ψ it is essential, according to BHK, to
either assert φ or to assert ψ. In particular, we need to have a choice of φ or
ψ, that tells us which we going to show. Similarly, to assert ∃xφ(x) we need
to have both a witness t and then we must also assert φ(t) for that particular
t. To assert an implication φ → ψ, we must have an effective rule that tells us
how to produce witnesses of ψ from witnesses of φ. In realizability we make the
vague term “rule” precise by defining to be a representable function in a pca.

Another viewpoint of realizability is that the powerset of a pca A, P(A) can
play a similar role to the complete Heyting algebra in Heyting valued models. In
fact the definition of realizability model for intuitionistic logic with only relation
symbols is identical to that of Heyting valued model.

Fix a signature (S,O,R) and a partial combinatory algebra A. Will will
also assume we have pairing and projection constants p, p0 and p1. These could
be either constructed in a general pca, or part of the structure of an extended
pca. We will write ⊤ for λx.λy.x and ⊥ for λx.λy.y.

Definition 12.1. A realizability model for (S,O,R) with pca A consists of the
following data:

1. For each sort S ∈ S a set MS

2. For each sort S a function ES : MS → P(A)

3. For each relation symbol R ∈ R of sort S1, . . . , Sn a function JRK : MS1
×

. . .×MSn
→ P(A)

4. For each operator symbol O ∈ O of sort S1, . . . , Sn → T a function JOK :
MS1 × . . .×MSn → MT such that there exists e ∈ A with the following
property. For all x1, . . . , xn with xi ∈ MSi and all a1, . . . , an with ai ∈
ESi

(xi) we have ea1 . . . an ↓ and ea1 . . . an ∈ ET (JOK(x1, . . . , xn)). We say
that e realizes or tracks JOK.

Finally, we have a non triviality condition, that for every sort S ∈ S there
exists an element a of MS where ES(a) is non empty.

We now describe the interpretation of intuitionistic logic in realizability mod-
els.

As for Heyting valued models we assign for each term t of sort T and each
variable assignment α, an element JtKα of MT . For realizability models, we

66

further ensure that these assignments are realized, in the following sense. Sup-
pose that xS1

1 , . . . , xSn
n is a list of variables including all those that occur free

in t. Then there is e ∈ A with the following property. For every free variable
assignment α and for f1, . . . , fn with each fi ∈ ESi

(α(xi)), we will ensure that
ef1 . . . fn ↓, with ef1 . . . fn ∈ JtKα. We define the value of JtKα exactly the same
as for Heyting valued models, namely, by induction with

JxKα := α(xi)

JOt1 . . . tnKα := JOK(Jt1Kα, . . . , JtnKα)

Lemma 12.2. There exists a realizer e ∈ A for each term t with free variables
amongst x1, . . . , xn, as described above.

Proof. Fix a list of variables x1, . . . , xn. We will show how to construct realizers
for terms containing only free variables in the list x1, . . . , xn. JxiKα is realized by
λx1, . . . , xn.xi. Suppose we are already given realizers f1, . . . , fm for t1, . . . , tm,
and that JOK is realized by e ∈ A. Then JOt1 . . . tmKα is realized by

λx1, . . . , xn.e(f1x1 . . . xn) . . . (fmx1 . . . xn)

We now show how to define truth values of formulas. For each formula φ
and variable assignment, α, we will define JφKα ⊆ A.

JRt1 . . . tnKα := JRK(Jt1Kα, . . . , JtnKα)
J⊥Kα := ∅

Jφ ∧ ψKα := {e | p0e ∈ JφKα and p1e ∈ JψKα}
Jφ ∨ ψKα := {e | (p0e = ⊤ and p1e ∈ JφKα) or (p0e = ⊥ and p1e ∈ JψKα)}

Jφ→ ψKα := {e | for all f ∈ JφKα, ef ↓ and ef ∈ JψKα}

J∃xS φKα :=
⋃

a∈MS

{e | p0e ∈ ES(a) and p1e ∈ JφKα[x7→a]}

J∀xS φKα :=
⋂

a∈MS

{e | for all f ∈ ES(a), ef ↓ and ef ∈ JφKα[x 7→a]}

Even more so than for Heyting valued models, it can be useful to instead
phrase this definition using forcing notation. For a given variable assignment
α, we write e ⊩α φ to mean e ∈ JφKα. We can then describe ⊩α explicitly as
follows.

e ⊮α ⊥ always
e ⊩α φ ∧ ψ iff p0e ⊩α φ and p1e ⊩α ψ
e ⊩α φ ∨ ψ iff either p0e = ⊤ and p1e ⊩α φ, or p0e = ⊥ and p1e ⊩α ψ
e ⊩α φ→ ψ iff if f ⊩α φ, then ef ↓ and ef ⊩α ψ
e ⊩α ∃xS φ iff there exists a ∈ MS such that p0e ∈ ES(a) and p1e ⊩α[x 7→a] φ
e ⊩α ∀xS φ iff for all a ∈ MS and for all f ∈ ES(a), ef ↓ and ef ⊩α[x 7→a] φ

67

Before showing the soundness theorem, we first introduce some notation.
For any pca A, we can encode finite lists of elements of A as single elements of
A, in a similar manner to how natural numbers are implemented in arbitrary
pcas. We write the encoding of lists as [e1, . . . , en] ∈ A, which is defined by
induction on the length of the list by

[] := p⊥⊥
[e1, . . . , en+1] := p⊤(pen+1[e1, . . . , en])

If Γ is a finite set of formulas that can be written as {φ1, . . . , φn} and α a
variable assignment, then we write e ⊩α Γ to mean e = [e1, . . . , en] and for each
i, e ⊩α φi.

Theorem 12.3. If Γ ⊢ φ is provable in intuitionistic logic, and xS1
1 , . . . , xSn

n

is a list of variables including all of those that occur free in Γ and φ, then we
can find e ∈ A such that for all variable assignments α, all f1, . . . , fn with
fi ∈ ESi(α(xi)), and all g such that g ⊩α Γ, we have ef1 . . . fng ↓ and

ef1 . . . fng ⊩α φ

Proof. To a large extent, this is very similar to the soundness theorem for Heyt-
ing valued models. We again work by induction on the definition of provability,
proving some cases as an example, and leaving the rest as exercises.

The case ∨E Suppose that we have deduced Γ ⊢ χ from the hypotheses
Γ ⊢ φ ∨ ψ, Γ, φ ⊢ χ and Γ, ψ ⊢ χ. By the inductive hypothesis, we may assume
we already have realizers for Γ ⊢ φ ∨ ψ, Γ, φ ⊢ χ and Γ, ψ ⊢ χ. Suppose that
x1, . . . , xn is a list of free variables including any occurring in Γ or ψ. We will
assume that the list x1, . . . , xn also includes any free variables occurring in φ
and ψ: we can do this using the non triviality condition in a very similar manner
to Heyting valued models. Hence we have e, f, g ∈ A such that for all variable
assignments α and all h1, . . . , hn such that hi ∈ ESi

(α(xi)) and all k, l,m such
that k ⊩α Γ, m ⊩α φ and l ⊩α ψ, we have

eh1 . . . hnk ⊩α φ ∨ ψ (4)

fh1 . . . hnkm ⊩α χ (5)

gh1 . . . hnkl ⊩α χ (6)

It follows from (4) that either p0(eh1 . . . hnk) = ⊤ and p1(eh1 . . . hnk) ⊩α φ
or p0eh1 . . . hnk = ⊥ and p1(eh1 . . . hnk) ⊩α ψ. In the former case we have
p0(eh1 . . . hnk)fg = f and in the latter p0(eh1 . . . hnk)fg = g. In the former
case, we have by (5) that fh1 . . . hnkp1(eh1 . . . hnk) ⊩α χ, and in the latter
case, by (6) we have gh1 . . . hnkp1(eh1 . . . hnk) ⊩α χ. Hence, in either case we
have

p0(eh1 . . . hnk)fgh1 . . . hnk(p1(eh1 . . . hnk)) ⊩α χ

So we can take our required realizer to be

λx1, . . . , xn.λy.p0(ex1 . . . xny)fgx1 . . . xny(p1(ex1 . . . xny))

68

The case ∃I Suppose we have deduced Γ ⊢ ∃xφ from Γ ⊢ φ[x/t]. Let
x, y1, . . . , yn be a list of free variables including all those occurring in Γ and
φ. By the inductive hypothesis, we have e such that for all variable assignments
α, and all f1, . . . , fn with fi ∈ E(α(xi)), and all kA such that k ⊩α Γ, we have

ef1 . . . fnk ⊩α φ[x/t]

In the interpretation of terms we ensured that there is g ∈ A such that for all
such α and fi we have gf1 . . . fn ∈ JtKα. Hence we can deduce

p(gf1 . . . fnk)(ef1 . . . fnk) ⊩α ∃xφ

We can therefore take our realizer to be

λx1, . . . , xn.λy.p(gx1 . . . xny)(ex1 . . . xny)

12.2 Realizability models for HAω

We now show how to construct standard realizability models for HAω. Instead
of giving one definition, we will give two different models for each pca+, A, that
we will refer to as the intensional model and the extensional model.

12.2.1 The intensional model

We define MS and ES for each sort S of HAω by induction on finite types. We
will ensure that MS ⊆ A, and then define ES(e) := {e}.

We define MN to be the copy of the standard natural numbers in A, i.e.
{n | n ∈ N}.

Suppose we have already defined Mσ and Mτ . We define Mσ×τ and Mσ→τ

as follows.
Mσ×τ := {pef ∈ A | e ∈ Mσ and f ∈ Mτ}

Mσ→τ := {e ∈ A | for all f ∈ Mσ, ef ↓ and ef ∈ Mτ}

We interpret equality to be the standard one, namely

Jx = yK :=

{
A if x = y

∅ otherwise

We interpret application by

JApK(e, f) := e · f

We interpret each constant symbol as the corresponding pca+ constant in
A. Namely,

Jsσ,τ,ρK := s Jkσ,τ K := k
Jpσ,τ K := p Jpσ,τ

0 K := p0 Jpσ,τ
1 K := p1

J0K := 0 JSK := S

69

This only leaves the recursor combinator, r, which we define by combining
the fixpoint combinator y with d from the pca+ structure. Our first (incorrect)
attempt would be to define Jrσ,τ K as,

r := λx.λy.y(λu.λz.d0zx(y(u(Pz))(Pz)))

This would certainly give us that for all x, y and z we have

rxyz ≃ d0zx(y(rxy(Pz))(Pz))

and in particular

rxy(Sz) ≃ d0(Sz)x(y(rxy(P (Sz)))(Pz))

≃ y(rxyz)z

Note, however, that there is no way to show that for the above definition
rxy0 ↓, since in order to show this, we would need that d00x(y(rxy(P0))(P0)) ↓,
which can only be defined once the subterm rxy(P0) is defined. Hence, we adjust
the above definition to get the one below, exploiting the fact that λ-terms are
always defined.

JrσK := λx.λy.y(λu.λz.d0z(kx)(λw.y(u(Pz))(Pz))⊤)

Theorem 12.4. The above model satisfies all the axioms (and hence all the
theorems) of HAω.

Proof. Note that we have interpreted equality in way that makes it straight-
forward to check the axioms of identity. By the above reasoning, each of the
equations associated with the constants also holds in the model. It only remains
to check that induction holds. Similarly to the recursor, we can do this using
the y combinator. This time it is slightly simpler. Suppose we are given e ∈ A
such that

e ⊩α φ(0) ∧ ∀nφ(n) → φ(Sn)

We can then show by induction, that for all n ∈ N we have

y(λu.λz.(d0z(k(p0e))(λw.p1e(u(Pz)))⊤))n ⊩α φ(n)

It follows that

λx.y(λu.λz.(d0z(k(p0x))(λw.p1x(u(Pz)))⊤)) ⊩

φ(0) ∧ ∀nφ(n) → φ(Sn) → ∀nφ(n)

Theorem 12.5. Markov’s principle holds in the intensional models of HAω.

70

Proof. First, note that we can show the following in general for a pca+, A.
Suppose that e is such that for all n ∈ N en and either en = ⊤ or en = ⊥.
If there is an n such that en = ⊤, then we can find the first such instance
computably and uniformly in e. We deduce this as a special case of the stronger
statement that we can compute f such that for all n, if there is k ∈ N such that
en+ k = ⊤, then fn ↓ and fn = k where k is the least such value.

f := y(λu.λz.((ez)(k0)λw.(S(u(Sz))))⊤)

However, we can now see that Markov’s principle is realized by

λx.y(λu.λz.((xz)(k0)λw.(S(u(Sz))))⊤)0

Theorem 12.6. The axiom of choice ACσ,τ holds in intensional models of
HAω for all sorts σ and τ .

Proof. Suppose that we have

e ⊩α ∀xσ ∃yτ φ(x, y)

Note that this gives us an element e′ of Mσ→τ defined by λz.p0(ez). Mean-
while, we also have

λz.p1(ez) ⊩α ∀xσ φ(x, e′x)

We can hence see that ACσ,τ is realized by λx.p(λz.p0(ez))(λz.p1(ez)).

12.2.2 The extensional model

We now give a second way to construct realizability models of HAω, this time
ensuring that we also get extensionality and the axiom of unique choice.

We again define MS and ES for each sort S by induction on finite types.
At each stage we will ensure that for each x ∈ MS , ES(x) is inhabited. It is
possible to construct these as quotients of the ones in the intensional model, but
to get a more concrete description of the model will will define them directly.

As before, we define MN := N and EN (n) := {n}.
For products, we define

Mσ×τ := Mσ ×Mτ

Eσ×τ ((x, y)) := {e | p0e ∈ Eσ(x) and p1e ∈ Eτ (y)}

Finally, for function types, we recall that e ∈ A tracks F : Mσ → Mτ if
for all x ∈ Mσ and all a ∈ Eσ(x) we have ea ↓ with ea ∈ Eτ (F (x)). We then
define

Mσ→τ := {F ∈ MMσ
τ | ∃e ∈ A e tracks F}

Eσ→τ (F) := {e ∈ A | e tracks F}

71

Note that every element of Mσ→τ is in particular a function from Mσ to
Mτ , so we can define application simply by

JApK(F, x) := F (x)

We again define equality to be the standard one, namely,

Jx = yK :=

{
A if x = y

∅ otherwise

Theorem 12.7. The above model satisfies all the axioms of HAω, as well as
the axioms of unique choice, function extensionality and Markov’s principle.

Proof. The proof that the axioms of HAω and Markov’s principle hold is essen-
tially the same as for the intensional model.

For function extensionality, suppose that t and s are both terms of sort
σ → τ , that α is any variable assignment and that for some e ∈ A we have
e ⊩α ∀xσ tx = sx. Then, by the definition of the model, JsKα and JtKα are
both functions from Mσ to Mτ , and for any a ∈ Mσ, and f ∈ Eσ(a), we
have ef ⊩α[x 7→a] tx = sx, which by the interpretation of equality and applica-
tion implies JtKα(a) = JsKα(a). Since this applies for arbitrary a we have, by
function extensionality in our meta theory, that JtKα = JsKα. However, by the
interpretation of equality, this implies that for any g ∈ A, we have g ⊩α s = t.
Hence, we have a realizer for function extensionality given simply by i.

We can show unique choice holds by similar arguments.

12.3 Standard realizability models for HAS

We now show how to construct realizability models of HAS. As before, we
take the natural number sort MN to simply be the usual one. This leaves the
problem of how to define the sort of sets. One way to motivate the definition,
is to view definition as similar to the one for Heyting valued models of HAS.
Instead of defining a set to be a function from N to the Heyting algebra, we
take sets to be functions A : N → P(A). We recall that the standard Heyting
valued models were defined to be global. It turns out that the way to do this
in realizability models is to take ES to be constantly equal to the same, non
empty set. We will take this to be ES(A) := {⊤}.

We interpret membership and equality, again similarly to Heyting valued
models.

Jn ∈ AK := A(n)

JA = BK :=
⋂
n∈N

{e ∈ A | ∀f ∈ A(n)p0enf ∈ B(n) ∧ ∀f ∈ B(n)p1enf ∈ A(n)}

Theorem 12.8. The above model satisfies all the axioms (and hence all the
theorems) of HAS.

72

Proof. Just as for Heyting valued models ofHAS, extensionality follows directly
from the interpretation of equality in the model.

We check comprehension. Let φ be any formula. We define A : N →
P(A) by A(n) := Jφ(n)Kα. We then have the following, immediately from our
interpretation of ∈.

k(pii) ⊩α ∀nn ∈ A ↔ φ(n)

It only remains to check second order induction. As before, we will use the
y-combinator. Suppose that

e ⊩α 0 ∈ A ∧ ∀nn ∈ A→ Sn ∈ A

Similarly to before, we have

λx.d0x(k(p0e))(λy.(p1e)x)⊤ ⊩α ∀xx ∈ A

Theorem 12.9. Every standard realizabilty of HAS satisfies the uniformity
principle.

Proof. Suppose that e ⊩ ∀X ∃nφ(X,n). Let A ∈ MS . We define the model
so that ES(A) = {⊤}. It follows that e⊤ ↓ and e⊤ ⊩ ∃nφ(X,n). Hence there
exists n ∈ MN = N such that p0(e⊤) ∈ EN (n) and p1(e⊤) ⊩ φ(A,n). We
hence have p0(e⊤) = n. However, p0(e⊤) can only be equal to at most one
numeral, and this value of independent of A, i.e. will get the same numeral
p0(e⊤) for any A ∈ MS . It follows that we have

λx.p(p0(x⊤))(λy.p1(x⊤)) ⊩ ∀X ∃nφ(X,n) → ∃n∀X φ(X,n)

13 Kleene Realizability

13.1 Encoding T0 in arithmetic

So far the main non trivial examples of pca that we’ve seen are T0 and T +
0 ,

the pca of normal forms and inside first reduction and the extended version.
As it stands, this is not something we can formalise in HA, or even in HAω;
we cannot even define the set of normal forms in this setting. Hence it is
useful to have way to view normal terms as numbers. That is, we need a
Gödelnumbering of terms. To define this, first note that we can define an
bijection from N × N → N. There are various ways to do this. For example,
note that the function ⟨−,−⟩ : N × N → N given by the following definition is
definable and provably a bijection already in HA.

⟨n,m⟩ := 1

2
(n+m)(n+m+ 1) +m

73

We can then define an injective function ⌜−⌝ : T + → N as follows:

⌜0⌝ := 0 = ⟨0, 0⟩ ⌜S⌝ := ⟨0, 1⟩ ⌜P⌝ := ⟨0, 2⟩ ⌜d⌝ := ⟨0, 3⟩
⌜k⌝ := ⟨0, 4⟩ ⌜s⌝ := ⟨0, 5⟩
⌜p⌝ := ⟨0, 6⟩ ⌜p0⌝ := ⟨0, 7⟩ ⌜p1⌝ := ⟨0, 8⟩

s · t := ⟨1, ⟨⌜s⌝, ⌜t⌝⟩⟩

Theorem 13.1. There is a total computable function f : N → N such that

f(⟨⟨n,m⟩, k⟩) =

{
⟨1, ⌜r⌝⟩ n = ⌜t⌝ for t ∈ T +

0 and tm→k r

⟨0, 0⟩ otherwise

As it turns out, we can now define application in HA, in the following sense.

Theorem 13.2. There is a formula φ(l,m, n) in the language of arithmetic
such that φ(l,m, n) is true if and only if l = ⌜s⌝ for a term s, m = ⌜t⌝ for a
normal term t, and s reduces to t at stage n. Furthermore, we may assume φ is
a negative formula, i.e. it does not contain disjunction or existential quantifiers
and that HA proves ∀l,m, nφ(l,m, n) ∨ ¬φ(l,m, n).

Definition 13.3. The axiom of Church’s thesis CT0! is the following sentence
of HAω.

∀fN→N ∃eN ∀nN e · n ↓ ∧ e · n = fn

Lemma 13.4. There is an element e of T +
0 with the property that for all

t ∈ T +, we have e⌜t⌝ = t′ if t evaluates to t′ at some stage n, and otherwise is
undefined. In particular, if t is normal, then e⌜t⌝ = t.

Proof. First note that using the decidability combinator for numbers, d, and
the fact that projection is computable, we can ensure that e⟨0, 0⟩ = 0, that
e⟨0, 1⟩ = S, that e⟨0, 2⟩ = P , and similarly for all the other constants. Using
the y combinator we can also ensure e⟨1, ⟨n,m⟩⟩ ≃ en(em). In particular, we
can see that en is defined whenever n is the Gödelnumber for a normal term.

13.2 The first Kleene algebra

The first Kleene algebra, K1 is often seen as the key example of pca+ and is the
one that was originally used for realizability, the general theory of pca’s being
a later generalisation of this example. K1 is the first example we will see of
an ω-pca, so we can assume that the underlying set is equal to N, and that in
the pca+ structure 0 is the actual zero of N and that S represents the actual
successor function. Furthermore, it is defined so that the representable partial
functions are exactly the computable partial functions. In fact these features
characterise K1 uniquely up to isomorphism, using a non trivial argument due
to Blum. However, for this course we will just show how to define an extended
pca with these properties.

74

Definition 13.5. We define K1 to be the pca with underlying set N, and ap-
plication defined as follows:

n ·m :=

{
l if enm = l

undefined otherwise

Note that we cannot use k and s from T +
0 directly, but we can still define

them as follows. For k we use the fact that pairing is computable.

k := ⌜λx.⟨1, ⟨⌜k⌝, x⟩⟩⌝

We define s using e from lemma 13.4. Our first attempt would be s0, as
defined below.

s0 := ⌜λx.λy.λz.e(exz)(eyz)⌝

As an element of T +
0 , this takes the Gödelnumbers of two normal terms as

input, and then evaluates them. However, we need to ensure that sx and sxy
are Gödelnumbers for terms, rather than the terms themselves. Hence, we again
use the computability of the pairing operator, and define

s1 := ⌜λx.λy.⟨1, ⟨⟨1, ⟨s0, x⟩⟩, y⟩⟩⌝
s := ⌜λx.⟨1, ⟨s1, x⟩⟩⌝

Theorem 13.6. Church’s thesis holds in both standard realizability models of
HAω on K1.

Proof. For the intensional model, MN→N is precisely the set of n ∈ N repre-
senting a total function N → N. So given such an n, it’s clear that if we want
a realizer for ∃eN ,∀mN e ·m↓ ∧ e ·m = fm, then the first component should
just be n. We still need to show how to find the second component, which
should be a realizer for ∀mN n ·m↓ ∧ n ·m = fm. The key point is that from
theorem 13.2 the statement ∀mN n · m↓ ∧ e · m = fm is equivalent to one of
the form ∀m ∃k φ(n,m, k) where φ is negative. Furthermore, in the presence of
Markov’s principle (which always holds in the realizability models we consider
in this course), this is equivalent to ∀m¬∀k¬φ(n,m, k), which is entirely neg-
ative. However, negative formulas ψ are always self-realizing. That is, we can
find f such that f realizes ψ whenever ψ is true. We can apply this here to get
a realizer for ∀mN n ·m↓ ∧ n ·m = fm.

Definition 13.7. We say an extended pca satisfies the computability axiom if
there exists c ∈ K1 with the following property. For all a, b, c ∈ K1, cabc ↓ and
cabc = 0 or cabc = 1, and for all a, b, ab ↓ if and only if there exists c such that
cabc = 1.

Lemma 13.8. K1 satisfies the computability axiom.

Proof. By theorem 13.1.

75

Theorem 13.9. There is no e ∈ K1 with the following property: For all a such
that a is total, ea ↓ and ea = 0 if an = 0 for all n, and ea = 1 if an ̸= 0 for
some n.

Proof. If there was such a term e, then by theorem 13.1 we could use it to
construct a term e′ such that e′ab = 1 if ab ↓ and e′ab = 0 if ab ↑. However,
this is not possible for any strictly partial pca (exercise).

Corollary 13.10. WLPO does not hold in either of the standard realizability
models of HAω on K1.

Proof. Suppose there was a realizer e of

e ⊩ ∀fN→N (∀n fn = 0) ∨ ¬(∀n fn = 0)

We will use e to contradict theorem 13.9. Suppose a is total. Then this
gives us an element of MN→N , directly for the intensional model, and as the
function that a represents for the extensional model. In either case we have
ea ⊩ (∀nan = 0) ∨ ¬(∀nan = 0). Hence either p0(ea) = ⊤ and p1(ea) ⊩
∀nan = 0, or p0(ea) = ⊥ and p1(ea) ⊩ ¬∀nan = 0. In the former case, we
have that for all n, p1(ea)n ⊩ an = 0, and so an = 0, and in the latter case
it is false that an = 0 for all n, because otherwise λn.⊤ would be a realizer of
∀nan = 0. Hence e′ := λa.p0(ea)01 has the required property to contradict
theorem 13.9.

Theorem 13.11. There is no e ∈ K1 with the following property: For all a
such that a is total and an ̸= 0 at most once, ea ↓ with ea ∈ {0, 1} and for all
n, a(2n+ (ea)) = 0.

Proof. Assume there is such an e. Using the y combinator, we can define a as
follows. For each n, we will define a(2n) and a(2n + 1). We first check if n is
least such that cean = 1. If not, we take both a(2n) and a(2n + 1) to be 0. If
it is, then we know that ea ↓. We then check the value of ea. If it is 0, we take
a(2n) = 1 and a(2n + 1) = 0. If it is 1, we take a(2n) = 0 and a(2n + 1) = 1.
If it is anything else, then we take a(2n) = a(2n + 1) = 0. Note that we have
ensured that whatever happens a is a total binary sequence with at most one
1. Hence ea ↓, and so cean = 1 for some n. By considering the least such n, we
get a contradiction.

Corollary 13.12. LLPO does not hold in either of the standard realizability
models of HAω on K1.

13.3 The Kleene Tree

We now work in HAS.

Definition 13.13. A set T of numbers is a tree if it is inhabited, every element
of T is the encoding of a finite sequence [a0, . . . , an−1] where ai ∈ {0, 1}, and

76

whenever [a0, . . . , an−1, an] ∈ T we have also [a1, . . . , an] ∈ T (we say T is prefix
closed).

An infinite path through the tree is a binary sequence f : N → 2 such that
for all n we have [f(0), f(1), . . . , f(n)] ∈ T .

We say T is infinite if for all n, T contains a binary sequence of length
greater than n.

We say T is decidable if we have n ∈ T ∨ n /∈ T for all n.

Theorem 13.14. In the standard realizability model of HAS on K1 there is an
infinite tree with no infinite branch (the Kleene tree).

Proof. We again use the fact that K1 satisfies the computability axiom. We first
define a set T ⊆ N externally to the model. We take T to be the set of codes for
sequences [a0, . . . , an−1] such that for all e < n with ceem = 1 for some m < n,
we have ai ̸= ei. Note that T cannot contain any computable infinite branches.
Suppose e ∈ K1 is a total binary sequence. Then ee ↓, and so cee = 1 for some
m. However, we can see that for all n > max(e,m) and all finite sequences
[a0, . . . , an−1] ∈ T , we have ae ̸= ee, and so e cannot be a branch of the tree.
However, T is infinite, and moreover for each n we can find [a0, . . . , an−1] ∈ T
computably: we evaluate ceem for each m, e < n, and whenever ceem = 1, we
can evaluate ee, and then ensure ae ̸= ee. If ceem = 0 for all m < n, we can
take ae to be either 0 or 1.

We can then view T as an element T̄ of MS by defining

T̄ (n) =

{
{⊤} n ∈ T

∅ n /∈ T

By the way that we defined T , we can computably decide whether or not a
binary sequence belongs to T , and so we have a realizer that T̄ is decidable.
Furthermore, using the fact that T has no computable infinite branch, we can
find a realizer witnessing that T̄ has no infinite branch, and similarly, we can
find a realizer witnessing that T̄ is infinite using the fact that T is “computably
infinite.”

Corollary 13.15. In the standard realizability model of HAS on K1 there is
an infinite open cover of Cantor space with no finite subcover.

Proof. We take the open cover to consist of Uσ for each finite binary sequence σ
such that σ /∈ T̄ . Now for every infinite binary sequence f ∈ 2N, there is n such
that [f(0), . . . , f(n)] /∈ T̄ . Hence we can take σ := [f(0), . . . , f(n)] to get f ∈ Uσ

and σ /∈ T̄ . However, given any finite set σ1, . . . , σk of finite binary sequences
in the complement of T̄ , we can take n to be the maximum length, and then
find τ ∈ T̄ of length n. However, we can now define f to be the infinite binary
sequence such that f(j) = τ(j) for j ≤ n, and f(j) = 0 for j > n. We then have
f /∈ Uσi for 1 ≤ i ≤ k.

77

14 The Second Kleene Algebra and Function
Realizability

14.1 The second Kleene algebra

Definition 14.1. A partial function F : NN ⇁ N is continuous if for all f ∈ NN

such that F (f) ↓ there is n ∈ N such that for all g ∈ NN, if g(i) = f(i) for i < n,
then F (g) ↓ and F (g) = F (f).

A partial function F : NN ⇁ NN is continuous if for all n the partial function
sending f to F (f)(n) is continuous.

Note that every continuous function NN → NN is in particular a continuous
function.

The key idea behind the second Kleene algebra is that we can encode partial
continuous functions NN ⇁ NN as elements of NN. We first show how to encode
partial continuous functions NN ⇁ N. Write N<ω for the set of finite sequences
of natural numbers. Note that we can view any function f : N<ω → N + {⊥}
as a continuous partial function function F : NN ⇁ N defined by

F (g) :=

{
f(g(0), . . . , g(n− 1)) f(g(0), . . . , g(n− 1)) ∈ N and n is least such

undefined otherwise

This in fact defines a surjective function from (N + {⊥})N<ω

to continuous
partial functions NN ⇁ N. Given continuous F : NN ⇁ N, we can define
f : N<ω → N + {⊥} on (a0, . . . , an−1) as follows. If F (g) = F (h) whenever
g(i) = h(i) = ai for i < n, then we take f(a0, . . . , an−1) := F (g), and otherwise
we take f(a0, . . . , an−1) to be ⊥. We say f is an associate of the function F .

However, we have a canonical bijection between (N + {⊥})N<ω

and NN by
composing with bijections N<ω ∼= N and N + {⊥} ∼= N. This is one way of
understanding the explicit definition below.

Definition 14.2. We define a function | from NN × NN to partial functions
N⇁ N. We define f |g(n) to be f(⟨n, [g(0), . . . , g(m− 1)]⟩)− 1 if m is the least
such number with f(⟨n, [g(0), . . . , g(m − 1)]⟩) > 0. If there is no such m, then
f |g(n) is undefined. We then convert this into a partial binary operator giving
a partial applicative structure on NN by

f · g(n) :=

{
f |g f |g is total

undefined otherwise

The partial applicative structure has elements s and k making it a partial
combinatory algebra, that we call the second Kleene algebra, K2.

We have a canonical way to make K2 into an extended pca.
We define 0 to be the function constantly equal to 0. Note that the function

sending f : N → N to the function λn.f(n) + 1 is evidently continuous, and so
has an associate, S that we use for the successor combinator. Note that for each
n, the numeral n is precisely the constant function λx.n.

78

14.2 Function realizability

We refer to realizability over K2 as function realizability. We will show two
key properties of function realizability: that every function NN → N is con-
tinuous, and that we have the axiom of choice ACN→N,N . These two axioms
are sometimes combined together into a single axiom called continuous choice,
which states that whenever ∀fN→N ∃xN φ(f, x) there exists a continous func-
tion F : (N → N) → N such that for all f ∈ NN we have φ(f, F (f)). However,
we will consider them separately. We first look at the axiom of choice.

Note that we have a continuous way to take a function f : N → N and
evaluate it: i.e. return the numeral f(n) given f and n as input. We can also go
the other way, and given an associate f for a continuous function F such that
F (n) is a numeral for all n, we can find, continuously in f , a function g : N → N
such that F (N) = g(n).

Using this, we can show the following for realizability models on K2.

Theorem 14.3. ACN→N,N→N holds in the standard extensional realizability
model of HAω on K2.

Definition 14.4. Let F : NN ⇁ NN. A modulus of convergence function is a
functionM : NN ⇁ N such that if F (g) ↓, then alsoM(g) ↓ and for all h : N → N
if h(i) = g(i) for i < M(g) then F (h) ↓ and F (h) = F (g).

Note that assuming ACN→N,N , F is continuous if and only if it admits a
modulus of convergence function. In fact we have the following theorem.

Theorem 14.5. We can find m ∈ K2 with the following property. For all f ,
if F : NN ⇁ NN is the partial continuous function that f represents, then mf
represents the modulus of convergence function for F .

Using this result we can show the following for realizability models.

Theorem 14.6. In both standard realizabliity models of HAω on K2, every
function NN → N is continuous.

Moreover, in the intensional model, there is a function m : NN → NN such
that for all f , m(f) is a modulus of convergence function for f .

15 Realizability with Truth

One the key features of realizability is that it gives us models that satisfy ax-
ioms that do not necessarily hold externally in the metatheory where we are
working (such as Church’s thesis). However, it is sometimes preferable to con-
sider a variation with the same idea that realizers capture the computational
information implicit in intuitionisitic proofs, but where only true sentences can
be realized. We will refer to this variation as realizability with truth.

This allows us to show properties such as Church’s rule: Given a constructive
proof (e.g. in HAω) that ∀xN ∃yN φ(x, y), there is an algorithm e such that
∀xN ∃yN φ(x, e ·y), provably in HAω. Moreover, in contrast to the anticlassical

79

axioms of Kleene realizability, this algorithm remains valid when we move to
stronger theories, even with classical logic, and with careful phrasing, we can
even deduce the statement is “true” in the metatheory where we are working.

15.1 An external description

We will first give an “external” description of realizability with truth along
similar lines to the other models with have considered in the course so far.

We fix a signature (S,O,R) of sorts, operator symbols and relation symbols,
and a pca+, A.

Definition 15.1. A realizability model with truth consists of the following:

1. For each sort S ∈ S a set MS

2. For each sort S a function ES : MS → P(A)

3. For each relation symbol R ∈ R of sort S1, . . . , Sn, a set JRK⊤ ⊆ MS1
×

. . .×MSn and a function JRK : MS1×. . .×MSn → P(A). We require that
if JRK(a1, . . . , an) is a non empty subset of A, then (a1, . . . , an) ∈ JRK⊤.

4. For each operator symbol O ∈ O of sort S1, . . . , Sn → T a function JOK :
MS1

× . . .×MSn
→ MT such that there exists e ∈ A with the following

property. For all x1, . . . , xn with xi ∈ MSi
and all a1, . . . , an with ai ∈

ESi(xi) we have ea1 . . . an ↓ and ea1 . . . an ∈ ET (JOK(x1, . . . , xn)).

We think of elements of JRK⊤ as being those tuples (a1, . . . , an) for which R
is true. Hence the condition states that if R is realized, then it is true. However,
we do not require the converse statement, so there can be true statements that
are not realized. We think of the realizers as providing evidence that a formula
is true, so if we have evidence that something is true, then it is true, but there
are also true statements that we don’t have enough evidence to know for certain.

For each variable assigment α, we define the interpretation of each term JtKα
the same as for realizability models.

For formulas, we first define what it means for a formula to be true in the
model.

R(t1, . . . , tn) true wrt α iff (Jt1Kα, . . . , JtnKα) ∈ JRK
⊥ true wrt α never
φ ∧ ψ true wrt α iff φ is true and ψ is true
φ ∨ ψ true wrt α iff φ is true or ψ is true
φ→ ψ true wrt α iff φ is true implies ψ is true
∃xS φ true wrt α iff there exists a ∈ MS such that φ is true wrt α[x 7→ a]
∀xS φ true wrt α iff for all a ∈ MS , φ is true wrt α[x 7→ a]

We extend realizability with truth from atomic formulas to all formulas
by induction, as follows. Note that this is almost the same as the realizability

80

interpretation we saw before, except that we adjust the definition for implication
and universal quantifiers.

e ⊮α ⊥ always
e ⊩α φ ∧ ψ iff p0e ⊩α φ and p1e ⊩α ψ
e ⊩α φ ∨ ψ iff either p0e = ⊤ and p1e ⊩α φ, or p0e = ⊥ and p1e ⊩α ψ
e ⊩α φ→ ψ iff if f ⊩α φ, then ef ↓ and ef ⊩α ψ, and φ→ ψ is true
e ⊩α ∃xS φ iff there exists a ∈ MS such that p0e ∈ ES(a) and p1e ⊩α[x 7→a] φ
e ⊩α ∀xS φ iff for all a ∈ MS and for all f ∈ ES(a), ef ↓ and ef ⊩α[x 7→a] φ

and ∀xS φ is true

As usual, we have a soundness theorem for realizability with truth:

Theorem 15.2. If Γ ⊢ φ is provable in intuitionistic logic, and xS1
1 , . . . , xSn

n

is a list of variables including all of those that occur free in Γ and φ, then we
can find e ∈ A such that for all variable assignments α, all f1, . . . , fn with
fi ∈ ESi(α(xi)), and all g such that g ⊩α Γ, we have ef1 . . . fng ↓ and

ef1 . . . fng ⊩α φ

The key new result for realizability with truth is that if a formula is realized,
then it is true, in the following sense.

Theorem 15.3. Let α be a variable assignment. Suppose there is e ∈ A such
that e ⊩α φ. Then φ is true wrt α.

Proof. We prove this by induction on formulas. Note that the definition of
realizability with truth was adjusted precisely to give us the cases of implication
and universal quantifiers in the inductive argument.

We still need to check the other cases, but these are straightforward.
We show the case of disjunction as an example. Suppose that e ⊩α φ ∨ ψ.

Then either p0e = ⊤ and p1e ⊩α φ or p0e = ⊥ and p1e ⊩α ψ. In the former
case we have φ is true by the inductive hypothesis, and so φ ∨ ψ is true, and
similarly in the latter case, ψ and so also φ ∨ ψ is true.

We can define realizability with truth models of HAω by the following defi-
nition:

We take MN to be N, and for sorts σ and τ , we take Mσ×τ to be Mσ×Mτ

just as in the extensional model of HAω. However, we adjust the definition of
Mσ→τ by taking it to be the set of all functions from Mσ to Mτ . As usual we
take Eσ→τ (f) to be the set of all e ∈ A that track f . We again define equality
to be absolute.

We can use the realizability with truth model to extract algorithms from
proofs in HAω that give us information about true formuals of arithmetic. For
example, we can show the following:

Theorem 15.4. Suppose that φ(x, y) is a formula of HAω whose only free
variables are xN and yN , and that HAω ⊢ ∀x∃y φ(x, y). Then we can find a
computable function, say e ∈ T0 such that for all n ∈ N, we have en ↓ and
φ(n, e · n) is true.

81

Proof. Suppose that HAω ⊢ ∀x∃y φ(x, y). Then using the soundness theorem
for the realizability with truth model of HAω for the pca T +

0 , we get a ∈ T +
0

such that a ⊩ ∀x∃y φ(x, y). Hence we can take e := λx.p0(ax). For each n, we
have p1(an) ⊩ φ(n, en), and so φ(n, en) is true.

15.2 The internal version

In theorem 15.4 we saw that given a proof in HAω, we could extract an algo-
rithm witnessing ∀x ∃y φ(x, y). However, we were only able to show that for
each n, φ(n, e · n) is true, not that the statement is provable in HAω. It is
also possible to give this stronger result using a similar technique. However, to
do this, it is necessary to consider a variation where we carry out parts of the
definition of realizability with truth inside HAω, and use this to prove parts of
the soundness theorem, again inside HAω.

We won’t cover this in complete detail, but to give a rough idea, one can
follow this outline:

1. Instead of working with the general theory of pcas, we only look at specific
pcas that we can formalise in HAω, with the application operator in
the pca appearing as a formula with 3 free variables, which is provably
functional. It is possible to do this for T +

0 by working with terms via their
Gödelnumbering. However, it turns out to be more useful to consider K1.

2. Instead of defining realizability models in general, we work directly with
ones that we can define in HAω. We only consider the realizability with
truth model of HAω above. We define Mσ and Eσ by external induction
on the sorts σ. We take Mσ to be the sort σ itself. We define Eσ to
be a formula with at most two free variables, xσ and eN . E.g. we define
Eσ→τ (x, e) to be the internal statement that e tracks (as an element of
K1) the function x.

3. We define the realizability interpretation by external induction on formu-
las. Namely, for each (external) formula φ, we define a formula of HAω

with an additional free variable, e, which we denote e ⊩ φ.

4. We also prove by induction on formulas, that it is provable in HAω that
∀eN e ⊩ φ → φ.

5. We prove the soundness theorem again by an external inductive argument,
this time on proofs. Namely, given a proof Γ ⊢ φ, we can find e ∈ N such
that HAω ⊢ e ⊩ φ.

By following this outline, we can sketch a proof of a stronger version of
theorem 15.4.

Theorem 15.5. Suppose that φ(x, y) is a formula of HAω whose only free
variables are xN and yN , and that HAω ⊢ ∀x∃y φ(x, y). Then we can find
n ∈ N such that HAω ⊢ ∀xN φ(x, n · x). We say HAω satisfies Church’s rule.

82

Proof. Suppose that HAω ⊢ ∀xN φ(x, n · x). Then we can find e ∈ N such that
HAω ⊢ e ⊩ ∀xN φ(x, y). HenceHAω ⊢ ∀xN (p1ex) ⊩ φ(x,p0e), and so we have
HAω ⊢ ∀xN φ(x,p0e). It turns out that one can show HAω ⊢ λx.p0(ex) =

λx.p0(ex), and so taking e′ := λx.p0(ex), we have HAω ⊢ ∀xN φ(x, e′x).

83

	Introduction
	Why intuitionistic logic?
	Review of intuitionistic first order logic

	Heyting Arithmetic
	Equality
	Review of first order Heyting arithmetic
	Second order Heyting arithmetic
	Heyting arithmetic with finite types
	-terms in HA

	Omniscience Principles
	Introducing the omniscience principles
	Review of the standard ordering on natural numbers
	An explicit version of LPO and the axiom of unique choice

	Heyting Algebras and Topology
	Posets and lattices
	Heyting algebras
	Topological spaces
	Some basic definitions and examples
	Neighbourhoods in a topological space
	Product topologies
	Connectedness

	Formal topologies

	Heyting Valued Models
	Heyting valued models
	Some simple examples of Heyting valued models
	Trivial Heyting valued models
	Sierpiński space

	Kripke Models and Formal Topological Models
	Forcing notation for Heyting valued models
	Kripke models
	Formal topological models

	Heyting Valued Models of Second Order Arithmetic
	Standard models
	Some new notation regarding variable assignments
	Standard models of second order Heyting arithmetic
	Some examples of standard models of HAS
	The trivial Heyting algebra
	Sierpiński space

	Cantor space
	The standard model of HAS on N

	Heyting Valued Models of Arithmetic with Finite Types
	Partial equivalence relations and H-sets
	Singletons in Heyting valued models of HAS and H-sets
	Standard Heyting valued models of HA
	The domains of the model, extent and equality
	The application operation
	Constant symbols

	Independence of choice and omiscience principles over HA
	The topological model over Cantor space
	Independence of countable choice

	Completeness and existence properties
	Completeness theorem for Heyting valued models
	Existence properties in logic
	Numerical existence property for Heyting arithmetic

	Partial Combinatory Algebras
	Some notation and terminology for partial functions
	Partial applicative structures
	Partial combinatory algebras
	Two examples of term pcas
	Extended pcas and computable functions

	Realizability
	Realizability models for intuitionistic logic
	Realizability models for HA
	The intensional model
	The extensional model

	Standard realizability models for HAS

	Kleene Realizability
	Encoding T0 in arithmetic
	The first Kleene algebra
	The Kleene Tree

	The Second Kleene Algebra and Function Realizability
	The second Kleene algebra
	Function realizability

	Realizability with Truth
	An external description
	The internal version

