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Abstract
In this thesis we investigate automorphisms of partial combinatory algebras and con-

struct realizability models of constructive set theory.

After some introductory and background material in chapters 1 and 2, we define in chap-

ter 3 a generalisation of Kripke and realizability models of intuitionistic logic that we call

Kripke realizability models. In chapters 4, 6 and 7 we then develop various realizability

models of constructive set theory. We show in chapter 5 how to use these techniques to

investigate the automorphisms of some partial combinatory algebras. In chapter 8 we

use a Kripke realizability model to show that a property known as the existence property

does not hold for the set theory CZF.
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Chapter 1

Introduction

1.1 Constructive Mathematics

Constructive mathematics can be broadly described as mathematics carried out while

avoiding certain principles accepted by mainstream mathematicians. This may be done

for a variety of reasons, but the main schools of thought (as listed by Troelstra and van

Dalen in the introduction to [37]) are as follows.

Finitism Finitists such as Kronecker believe that only objects that can be represented

numerically are mathematically meaningful. They therefore may avoid “higher order”

objects such as sets.

Predicativism Predicativists, such as Poincaré believe that definitions are not valid

if they refer to objects that have not yet been defined. This means that quantifiers in

definitions should range over objects that have already been defined.

Intuitionism Intuitionism was developed by Brouwer, who believed that objects stud-

ied by mathematicians are inherently mental constructions. He asserted that mathemati-

cal objects are only meaningful if they can be grasped mentally. Intuitionists are known
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for rejecting excluded middle (every proposition is either true or false). This is because

P ∨ ¬P can only be known if either P is proved to be true, or a contradiction is derived

from assuming P to be true. Another well known intuitionist was Heyting.

Constructive Recursive Mathematics This is also known as Russian constructive

mathematics and was developed by Markov. He believed that mathematical objects are

only meaningful if they can be represented numerically. This includes functions and

even partial functions on the naturals, as long as they are computable.

Bishop Style Constructive Mathematics Bishop was the first constructive mathe-

matician to put little emphasis on the philosophical basis of constructive mathematics

and to instead focus on actually carrying out mathematics in a constructive style. He

proved constructively a large number of theorems in analysis, and constructive mathe-

maticians have continued this programme and expanded it to other areas of mathematics.

Bishop style proofs are usually carried out in such a way that they can be accepted by

intuitionists, constructive recursive mathematicians and classical mathematicians.

One of the main principles of constructive mathematics is that the meaning of formulas

is given by the Brouwer-Heyting-Kolmogorov, or BHK interpretation. That is,

• to prove P ∨Q is to either prove P or to prove Q

• to prove P ∧Q is to prove P and prove Q

• to prove P → Q is to possess a rule which given a proof of P returns a proof of Q

• to prove ⊥ is impossible

• to prove (∃x)P (x) is to construct a witness a and possess a proof of P (a)

• to prove (∀x)P (x) is to possess a rule which given an object a returns a proof of

P (a)
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There is some variation in how this is interpreted.

For intuitionists and Bishop-style constructivists, “rule” is a primitive notion, whereas

for constructive recursive mathematicians “rule” refers to computable function.

For intuitionists and some constructive recursive mathematicians, the above definition

of “proof” is the only meaningful notion of mathematical truth. They deduce that it is

natural to identify truth and provability. This results in beliefs contradicting classical

mathematics such as Brouwer’s principle that all functions are continuous and the Rus-

sian constructivists’ axiom Church’s Thesis, stating that all functions on the naturals are

computable.

A more common viewpoint is that there is some notion of truth external to provability.

Many constructive mathematicians hold that classical mathematics is “true,” but that

constructive proofs provide a better understanding of mathematical results.

In practice this means producing proofs that are classically valid, but where certain prin-

ciples are either avoided entirely or only used with caution. The main principle to be

avoided is excluded middle: that is, the axiom of classical logic stating that every propo-

sition is either true or false. We refer to logic without excluded middle as intuitionistic

logic.

1.2 The Metamathematics of Constructive Mathematics

1.2.1 Reasons for Studying

In the author’s opinion, the main reasoning for studying the metamathematics of con-

structive mathematics is the same as for classical mathematics: to get a better under-

standing of mathematical theories as they are used. This consists of identifying when

and why particular axioms are needed to prove particular theorems, and finding the

limitations of a theory. This includes knowing when a theory can neither prove nor
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disprove propositions of interest and knowing what mathematical objects are definable

from within a theory.

Mathematical logic is also interesting to study as a mathematical field in its own right.

Formal systems are mathematical objects themselves rich in properties worth studying

and a source of challenging problems. In particular formal systems based on constructive

mathematics have interesting properties not shared by classical ones. These included the

disjunction property and numerical existence property, based on the BHK interpretation.

We will see these in more detail in chapter 8.

Mathematical logic for constructive mathematics may even turn out to have practical

benefits. Realizability allows one to extract algorithms from constructive proofs. If one

has a constructive proof of a function having desired properties, instead of writing a

computer program by hand, implementing the function, one may enter the proof into a

proof assistant such as Coq and extract the program automatically.

1.2.2 Formal Systems

There is a very large number of formal systems that have been considered for construc-

tive mathematics. For example, there are many intuitionistic theories based on first or

higher order arithmetic that we do not consider at all in this thesis. However, there is one

main system that is considered constructive and yet “general purpose” enough to provide

a foundation for constructive mathematics. This is Martin-Löf type theory. Martin-Löf

type theory was developed “from the ground up” to agree with the BHK interpretation

of quantifiers. It is therefore very natural to constructive mathematicians as a founda-

tion. However, this has the disadvantage that it is quite different to formal systems that

classical mathematicians are used to studying.

The emphasis in this thesis is not on Martin-Löf type theory. As an alternative to Martin-

Löf type theory, one may take instead constructive set theory as a foundation for con-

structive mathematics. This has the advantage of being the same language that classical

mathematicians are used to using for formalisation. Yet there are set theories whose ax-
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ioms can be justified as constructive and are still rich enough to provide a basis for most

of the practice of constructive mathematics. Although many constructive set theories

have been put forward, the emphasis in this thesis is very much on the most well known

constructive set theory: Aczel’s constructive Zermelo-Fraenkel (CZF). CZF has a nat-

ural interpretation into type theory and hence has solid constructive foundations and yet

is powerful enough to develop a lot of mathematics.

1.2.3 Techniques

The techniques used to study classical mathematics are often inadequate for studying

constructive mathematics. One reason for this is that excluded middle holds in models

(in the sense of model theory) as well as in the more general boolean valued models.

Hence these models are incapable of describing non-classical constructive theories, that

is, theories where excluded middle is false. The other issue is that often the existence of

these models is not proved in a constructive way.

This causes two problems. First of all constructive proofs are better here for the same

reason that they are better anywhere: they tell us more about the theorem that we are

proving and the objects we are constructing. Secondly, it is often useful for proving

metamathematical results to be able to formalise the construction of our models inside

the theory we are studying. Hence if we are studying a constructive theory it is useful to

have a constructive proof of the existence of the models we are studying. In this thesis

we will aim where possible to ensure that our proofs are constructively valid.

Unfortunately this is not always possible and in some instances, although we will be

proving results about constructive theories, the proofs themselves will be non construc-

tive.

There is a rich variety of models more suited to constructive theories including Kripke

models, Beth models, Heyting valued models, and realizability models. These are fully

described, for example in [37]. In this thesis the emphasis is very much on realizability

models.
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One way of looking at realizability models is that we start off with some notion of “rule”

provided by a structure called a partial combinatory algebra (or a more general structure)

and then use this notion of “rule” in the BHK interpretation. Since realizability is so

closely related to the BHK interpretation, it provides very natural models for constructive

mathematics.

The main aim of this thesis is to develop realizability models to help us understand better

the limitations of various constructive set theories.

1.3 Outline of the Thesis

We start in chapter 2 by giving a brief introduction to combinatory algebras and con-

structive set theory.

In chapter 3 we define structures that we call Kripke realizability models. We prove that

they are sound for intuitionistic logic and show that they generalise Kripke models and

realizability models.

In chapter 4 we construct realizability models for constructive set theory. These gener-

alise existing models by allowing the pca used to construct them to be a class rather than

a set. We give some examples where it is a proper class and show that in this case the

power set axiom can fail.

In chapter 5 we study the automorphism groups of partial combinatory algebras. In

particular we show that realizability can be used as a tool to find restrictions on the

automorphism groups of several examples of pcas.

In chapter 6 we develop realizability models based on automorphisms of pcas that can be

used to show that choice principles are independent of CZF. We call these symmetric

realizability models. We give an example of a symmetric realizability model where

countable choice fails.

In chapter 7 we adapt the models from chapter 6 to allow the order pca used to construct
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them to be a proper class. We use this to show that a very weak choice principle, wPAx

is independent of CZF.

Finally in chapter 8 we will use Kripke realizability models to show what is by far the

biggest result in this thesis. A theory has the existence property if whenever (∃x)φ(x) is

provable, there is a formula χ(x) such that (∃!x)φ(x) ∧ χ(x) is provable. This property

is often expected for constructive theories on the basis of the BHK interpretation, but we

will show that it fails for CZF.

1.4 Notation

We will write

A := B

to mean that A is defined to be B.

We will follow the convention that t[x1, . . . , xn/r1, . . . , rn] means simultaneous replace-

ment of the free variables x1, . . . , xn by the terms r1, . . . , rn. However, we will always

implicitly assume that when we do this any variables that occur free in ri do not become

bound after the substitution. This is always possible by relabelling bound variables. This

applies both for lambda terms and for formulas.

We will often write a term with free variables amongst x1, . . . , xn as t(x1, . . . , xn). Then

given terms r1, . . . , rn, we write t(r1, . . . , rn) to mean t[x1, . . . , xn/r1, . . . , rn].

We will follow the convention from constructive set theory of referring to sets that con-

tain at least one element as inhabited. In intuitionistic logic this is a strictly stronger

notion than not empty.

In the following table we list some remaining notational conventions.
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Notation Meaning

〈, 〉 ordered pair

First() first component of ordered pair

Second() second component of ordered pair

H ≤ G H is a subgroup of G

mv(A,B) multivalued functions from A to B

supi di the supremum of the set {di | i ∈ ω}

X≤ {y ∈ P | (∃x ∈ X)y ≤ x}, where X ⊆ P a poset

OrbG(a) the orbit of a under G

StabG(a) the stabiliser of a in G

|a| cardinality of a set a

P(A) power set of A

P∗(A) set of inhabited subsets of A
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Chapter 2

Background Material

In this chapter we give a brief introduction to partial combinatory algebras as used in the

remainder of this thesis. A more detailed introduction to partial combinatory algebras

and order partial combinatory algebras is contained in the first chapter of [39]. This

material refers to definitions and results in the lambda calculus. The definitive reference

text for this area is [4].

We will also define the two intuitionistic set theories IZF and CZF that will be referred

to in this thesis, as well as a related theory, CST and will also prove a few simple

lemmas that are used later.

2.1 Applicative Structures and Some Useful Notation

In this section we introduce partial combinatory algebras and the more general order par-

tial combinatory algebras. We follow [39] and start by giving the very general definition,

applicative structure.

Definition 2.1.1. An applicative structure,A, is a pair 〈A, ·〉, where · (which we refer to

as application) is a partial function
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· : A× A ⇁ A

Definition 2.1.2. 1. For a, b ∈ A, we write a.b or ab to mean ·(a, b).

2. For a1, . . . , an ∈ A, we write a1 . . . an to mean (. . . (a1.a2).a3). . . . .an). That is,

we take application to be left associative.

Since · is in general a partial operation, we will often need to use the following notation

in order to make things clearer.

Definition 2.1.3. Let f, g : A ⇁ A be partial functions and a, a′ ∈ A, then

1. We write f(a) ↓ to mean that f is defined at a.

2. We write f(a) ' g(a′) to mean that f(a) ↓ if and only if g(a′) ↓, and that if this

is the case then f(a) = g(a′).

When visualising applicative structures, it is often useful to consider which partial func-

tions are representable.

Definition 2.1.4. Let A be an applicative structure, and let a ∈ A. We say that a

represents a partial function, f : A⇁ A, if for all b ∈ A,

a.b ' f(b)

We say that f : A⇁ A is representable if there is a ∈ A such that a represents f .

Definition 2.1.5. Given an applicative structure, A, we define terms over A inductively

as follows

1. There is a countable supply of free variables, xi, each of which is a term.

2. Each element, a of A is a term.
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3. If s and t are terms, then the ordered pair, 〈s, t〉 is also a term. We write this as

(s.t).

We say that a term is open if it contains at least one free variable, and closed if it contains

no free variables.

It is useful to extend the notation we had before to all terms.

Definition 2.1.6. We define inductively what it means for a closed term, s, to denote

a ∈ A

1. If a′ ∈ A, then a′ denotes a if and only if a = a′

2. (s′.s′′) denotes a if and only if there are a′, a′′ ∈ A such that s′ denotes a′, s′′

denotes a′′, and a′.a′′ ' a.

If t is a closed term and there is an a ∈ A such that t denotes a, we write t ↓ and say that

t denotes.

If t(x1, . . . , xn) is an open term with free variables amongst x1, . . . , xn, we write t ↓ to

mean that for every a1, . . . , an ∈ A, t(a1, . . . , an) ↓.

Let s(x1, . . . , xn) and t(x1, . . . , xn) be terms over an applicative structure, A, with free

variables amongst x1, . . . , xn. Then we write s ' t to mean that for every a1, . . . , an ∈

A, s(a1, . . . , an) ↓ if and only if t(a1, . . . , an) ↓ and if s(a1, . . . , an) ↓ then there is a

such that s(a1, . . . , an) denotes a and t(a1, . . . , an) denotes a.

2.2 Partial Combinatory Algebras

We now give the definition of partial combinatory algebra.

Definition 2.2.1. A partial combinatory algebra (pca) is an applicative structure, A,

with distinguished elements, s and k such that,
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1. for all a, b ∈ A, kab ' a.

2. for all a, b ∈ A, sab ↓.

3. for all a, b, c ∈ A, sabc ' ac(bc).

If in addition s 6= k then we say that A is a non trivial pca. If s = k we say that A is

trivial.

Definition 2.2.2. IfA is a pca and the application map · : A×A ⇁ A is a total function

we say that A is a combinatory algebra.

One of the main motivations for pcas is that they should be able to provide a basis for

realizability. According to this we should be able to encode mathematical objects as

elements of A. “Rules” that transform mathematical objects into other mathematical

objects should be representable in A. If we have a term t(x) with one free variable then

we can easily construct a function that takes a and returns t(a). Hence this function

should be representable in A. The proposition below shows that we can do this, and

moreover, in the proof we can see that the pca axioms are precisely what we require to

do this.

Proposition 2.2.3. Suppose that t(x) is a term. Then there is a term t∗ that does not

contain the free variable x such that t∗ ↓ and for all a ∈ A

t∗a ' t(a)

Proof. We define t∗ by induction on the definition of terms.

1. If t is the free variable x, we set t∗ = skk (note that this represents the identity

function on A).

2. If t is a free variable, y distinct from x, or an element a, of A, we set t∗ = ky or

t∗ = ka respectively.
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3. If t = (t′.t′′), we set t∗ = st′∗t′′∗.

One can easily check that by induction that t∗ is as required.

We write t∗ as

(λx).t(x)

and write

(λx1, . . . , xn).t(x1, . . . , xn)

to mean

(λx1). . . . (λxn).t(x1, . . . , xn)

We can use lambda terms to construct fixed point elements in the following sense. This

is proved, for example, in chapter 1 of [39].

Proposition 2.2.4. Let A be a pca. Then,

1. There is y ∈ A such that for any f ∈ A,

(yf) ' f(yf)

2. There is z ∈ A such that for any e ∈ A, ze ↓, and for every f ∈ A,

(ze)f ' e(ze)f

The following theorem states formally that for any pca, we can find elements that behave

like pairing and projection functions, as well as elements behaving like the natural num-

bers. This is a well known theorem, and a proof can be found, for example in chapter VI

of [5].

Theorem 2.2.5. Let A = 〈A, s,k〉 be a pca. Then we can find elements p, p0, p1, 0,

sN , pN , d, and a subset N ⊆ A such that the following are satisfied.

1. ∀a, b ∈ A, pab ↓ and p0(pab) = a, p1(pab) = b



2 BACKGROUND MATERIAL 14

2. 0 ∈ N , whenever n ∈ N , we have sNn ↓, and sNn ∈ N , and N is the smallest

set with this property

3. ∀n ∈ N , pNn ↓, and pN(sNn) = n

4. ∀n,m ∈ N, a, b ∈ A, dnmab = a if n = m, and dnmab = b if n 6= m

5. if there is n ∈ N such that 0 = sNn, then A is trivial.

For n ∈ ω we define n inductively by 0 = 0 and n+ 1 = sNn.

We will often write p0e as (e)0 and p1e as (e)1 for convenience.

The constants in theorem 2.2.5 can be constructed from s and k. We will need this fact

later, since it implies that these constants can be chosen so that they are fixed by any

automorphism fixing s and k.

However, it is often useful to explicitly give suitable constants for a particular pca. For

instance this is the case in chapter 5. We will give some examples of this in section 2.4.

2.3 Order Partial Combinatory Algebras

Order partial combinatory algebras were developed by van Oosten and Hofstra in [40] as

a generalisation of pcas. They are applicative structures that also have an order structure

and the pca axioms are satisfied only up to the ordering. To help define this, the following

notation is useful.

Definition 2.3.1. Let A be an applicative structure with partial ordering, ≤, and let s, t

be terms over A. We write

s � t

to mean that if t ↓, then also s ↓, and

s ≤ t
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Definition 2.3.2. An order partial combinatory algebra (opca) is an applicative struc-

ture, A, together with a partial ordering, ≤, and distinguished elements s and k such

that

1. If a, b, a′, b′ ∈ A with a ≤ a′ and b ≤ b′, then a.b � a′.b′.

2. For all a, b ∈ A, kab � a.

3. For all a, b ∈ A, sab ↓.

4. For all a, b, c ∈ A, sabc � ac(bc).

One can easily generalise proposition 2.2.3 to the following. (This appears in chapter 1

of [39].)

Proposition 2.3.3. Suppose that t(x) is a term. Then there is a term t∗ that does not

contain the free variable x such that t∗ ↓ and for all a ∈ A

t∗a � t(a)

As noted by van Oosten in, for instance, chapter 1 of [39], proposition 2.2.4 still holds

for order pcas.

Proposition 2.3.4. Let A be an opca. Then,

1. There is y ∈ A such that for any f ∈ A,

(yf) � f(yf)

2. There is z ∈ A such that for any e ∈ A, ze ↓, and for every f ∈ A,

(ze)f � e(ze)f

The proof of theorem 2.2.5 can easily be adapted to give the following theorem over

order pcas. This again appears in chapter 1 of [39].
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Theorem 2.3.5. Let A = 〈A, s,k〉 be an opca. Then we can find elements p, p0, p1, 0,

sN , pN , d, and a subset N ⊆ A such that the following are satisfied.

1. ∀a, b ∈ A, pab ↓ and p0(pab) ≤ a, p1(pab) ≤ b

2. 0 ∈ N , whenever n ∈ N , we have sNn ↓, and sNn ∈ N , and N is the smallest

set with this property

3. ∀n ∈ N , pNn ↓, and pN(sNn) ≤ n

4. ∀n,m ∈ N, a, b ∈ A, dnmab ≤ a if n = m, and dnmab ≤ b if n 6= m

2.4 Examples of Pcas and Opcas

The canonical example of a pca is based on computable numbers as follows.

Example 2.4.1. Define a partial binary operation, ·, on N by n.m = φn(m), where we

write φn for the computable function encoded by n.

Note that the representable partial functions are precisely the computable ones. We can

clearly define computable functions to fulfil the roles of s and k. Here, k would accept a

number n and generate a program that returns n on any input. s would define a program

that given input e, returns a program that given input f , returns another program that

given input g runs e and f as programs with input g, then applies the result of the former

to the result of the latter. This defines the pca K1, sometimes referred to as the first

Kleene algebra.

ForK1, we can explicitly prove theorem 2.2.5 by takingN to beK1 itself since successor,

predecessor, and decider are clearly computable.

Example 2.4.2. Let A = NN. This is can be thought of as a topological space (usually

referred to as Baire space) by taking the product topology on N with the discrete topol-

ogy. The continuous functions on A can be encoded as elements of A in the following
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way. Given a continuous F : A→ A, we can find an f such that for all g ∈ A,

F (g)(n) = f(〈n〉 ∗ ḡ(m))− 1

where ∗ indicates list concatenation, ḡ(m) is a list of the first m values of g, and m

is chosen to be the first number such that f(〈n〉 ∗ ḡ(m)) > 0. This might suggest the

following application on A.

f ∗ g(n) =

f(〈n〉 ∗ ḡ(m))− 1 if there is a least m such that f(〈n〉 ∗ ḡ(m)) > 0

undefined otherwise

However, note that this application might return a partial function, whereA consists only

of total functions. We therefore need to define application as

f · g =

 f ∗ g f ∗ g is total

undefined otherwise

This application does give a pca, referred to as K2, or the second Kleene algebra

Example 2.4.3. In the previous example, note that s and k are both computable functions

and observe that if the application of two computable functions is defined, then it is also

computable. Hence there is a subpca of K2 consisting of the computable functions. This

pca is called KREC
2 .

In both K2 and KREC
2 we can take N from theorem 2.2.5 to be the constant functions

with the usual zero and successor.

Example 2.4.4. We can define an application on P(ω). First fix encodings of finite

subsets of ω and pairs of elements of ω as elements of ω. We write 〈, 〉 for the pairing

function ω2 → ω, and write n ⊆ A to mean that n ∈ ω encodes a finite subset of

A ∈ P(ω). We can now define application as

A.B = {c | 〈b, c〉 ∈ A, b ⊆ B}

This forms a combinatory algebra known as the graph model (of the lambda calculus).

As for K2, the representable functions are precisely the continuous ones.
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Example 2.4.5. In the previous example, s and k can be taken to be computably enumer-

able sets and that if A and B are computably enumerable, then A.B is also computably

enumerable. Hence P(ω) has a subpca P(ω)c.e. of the computably enumerable sets.

In both P(ω) and P(ω)c.e. we can take N to be singletons {n} for n ∈ ω with the usual

successor and predecessor.

Example 2.4.6. Given a directed complete partial order (dcpo), D, we can define a

dcpo, D∞ containing D such that D∞ is a combinatory algebra. We first define Di

recursively by D0 = D and Di+1 is the dcpo of homomorphisms Di → Di. We then

define maps ϕi : Di → Di+1, ψi : Di+1 → Di by ϕ0(d) = (λx).d, ψ0(f) = f(⊥), and

ϕi+1(d) = ϕi ◦ d ◦ ψi, ψi+1(f) = ψi ◦ f ◦ ϕi. D∞ is then the inverse limit of Di, ψi.

Application is then defined as

d.d′ = sup
i
di+1(d′i)

For more details see chapter 5 of [4].

K1 and K2 were first developed by Kleene, P(ω) was developed independently by

Plotkin and Scott, and D∞ was developed by Scott.

Example 2.4.7. Let A be a pca. Then note that A is also an opca with the discrete

ordering. That is e ≤ f if and only if e = f .

One might expect a converse to this wherein every opca with the discrete order is a pca.

We will see some counterexamples in section 2.5.3 showing that this is not the case.

Example 2.4.8. Suppose that A is a pca. Then one can give an order pca structure

on P(A) as follows. Given A,B ∈ P(A), if a.b ↓ for all a ∈ A, b ∈ B, then let

A.B := {a.b | a ∈ A, b ∈ B}. Otherwise A.B is undefined. The ordering of P(A) is

given by inclusion. Note that we can take s to be {sA} and k to be {kA}.
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2.5 Term Models of the Lambda Calculus and Combi-

natory Logic

One way of viewing pcas is as models of combinatory logic and so it should not be

surprising that pcas can be constructed as term models of the lambda calculus and com-

binatory logic.

Throughout this thesis we will often use pcas and opcas constructed in such a way and

so we now briefly introduce the lambda calculus and term models.

2.5.1 The Lambda Calculus

Definition 2.5.1. The class, Λ of lambda terms is defined inductively as follows:

1. xi ∈ Λ where xi is one of a countable supply of free variables

2. if M ∈ Λ and x is a variable, then (λx).M ∈ Λ

3. if M,N ∈ Λ, then (MN) ∈ Λ

For our purposes we will also consider the lambda calculus with a set of constants added

to the language. We therefore make the following definition

Definition 2.5.2. Given a set, C the class Λ(C) is defined inductively as follows:

1. for c ∈ C, there is a corresponding atomic term c ∈ Λ(C)

2. xi ∈ Λ(C) where xi is one of a countable supply of free variables

3. if M ∈ Λ(C) and x is a variable, then (λx).M ∈ Λ(C)

4. if M,N ∈ Λ(C), then (MN) ∈ Λ(C)

The lambda calculus, combinatory logic, and related systems are all based on notions of

reduction.
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Definition 2.5.3. A notion of reduction on Λ is a binary relation on Λ.

Definition 2.5.4. A notion of reduction, R is compatible if whenever L,M,N ∈ Λ and

(M,N) ∈ R, also (LM,LN) ∈ R, (ML,NL) ∈ R and ((λx).M, (λx).N) ∈ R.

Definition 2.5.5. For a notion of reduction, R, one step R reduction,→R is the compat-

ible closure of R.

�R, is the reflexive, transitive closure of→R.

=R is the reflexive, transitive, and symmetric closure of→R.

We say that a term M is in normal form (over R) if one cannot perform R-reduction.

The main reduction that we will be considering is that of β-reduction. That is, the

following notion of reduction:

Definition 2.5.6.

β := {((λx).M)N,M [x/N ])}

Definition 2.5.7. A notion of reduction R has the Church-Rosser property if whenever

M �R L1 and M �R L2 then there is some N such that L1 �R N and L2 �R N . We

write this in a diagram as follows. M
R
����

R
�� ��
L2

R����

L1

R �� ��
N

Theorem 2.5.8 (Church-Rosser). β has the Church Rosser property.

Proof. A proof for Λ can be found for example in [4]. The same proof carries over to

Λ(C), but for completeness we will show explicitly that it follows from the result for Λ.

Suppose that M �R L1 and M �R L2. Let c1, . . . , cn be a list of the constants appear-

ing in M , L1, and L2. Let x1, . . . , xn be free variables not occurring anywhere in M ,

L1 or L2 (free or bound). Then note that replacing c1, . . . , cn by x1, . . . , xn commutes

with β-reduction. Hence we can get the result by replacing c1, . . . , cn by x1, . . . , xn

throughout, applying the usual Church-Rosser theorem, and then replacing x1, . . . , xn

by c1, . . . , cn throughout.
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2.5.2 Combinatory Logic

Definition 2.5.9. The terms of combinatory logic, CL are defined inductively as follows:

1. each xi of a countable supply of free variables, xi is a term

2. the constants k and s are terms

3. if M and N are terms, then (M.N) is a term.

As for the lambda calculus, we will also consider the modified definition with a set C of

constants.

Definition 2.5.10. The terms of combinatory logic over C, CL(C) are defined induc-

tively as follows:

1. if c ∈ C then there is a corresponding c ∈ CL(C)

2. for each xi of a countable supply of free variables, xi ∈ CL(C)

3. the constants k and s are terms of CL(C)

4. if M and N are terms, then (M.N) is a term of CL(C).

We can then define a notion of reduction R, as well as→R and�R over CL in exactly

the same way as for the lambda calculus.

The main notion of reduction considered over CL, and indeed over CL(C), is the fol-

lowing:

Definition 2.5.11.

w := {(kMN,M) |M,N ∈ CL(C)} ∪ {(sMNL,ML(NL)) |M,N,L ∈ CL(C)}

The following theorem corresponds to theorem 2.5.8 for Λ(C). It is a well known theo-

rem for CL proved, for instance, in [4], and as before can be easily adapted to CL(C).

Theorem 2.5.12. w has the Church-Rosser property.



2 BACKGROUND MATERIAL 22

2.5.3 Examples of Term Models

The simplest term model is the open term model, defined as follows.

Note that =β gives an equivalence relation on Λ(C). Let T be the set of equivalence

classes. Note that one can take the application of M and N to be (M.N), since this

operation respects the equivalence relation and we have s and k given as follows.

s := (λx, y, z).xz(yz)

k := (λx, y).x

Let Λ0(C) be the set of closed terms. Then note that s and k given above are closed

and (M.N) is closed if both M and N are. Hence Λ0(C) gives a term model which is a

subpca of T .

The following example appears in chapter VI of [5].

Example 2.5.13. Let NT ⊆ CL(C) be the set of normal forms. Then we can define

application on NT as follows:

M.N :=

L if M.N �R L for some normal form L

undefined otherwise

Proposition 2.5.14 (Beeson). 1. NT with the discrete order is an opca

2. NT is not a pca

Proof. Suppose that MN(LN) �w K where K is a normal form. Then sMLN →w

MN(LN) and hence sMLN �w K. Similarly for k.

To show that NT is not a pca, we will show that there are situations where sMNL ↓,

but ML(NL) ↑. Let N = L = (λx).xx. Let M = k. Then NL has no normal form.

That is NL ↑. Hence ML(NL) ↑. However, sMNL�w L, and so sMNL ↓.
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Remark 2.5.15. If we do the same thing with Λ(C) we don’t even get an opca. Let

M = N = (λx).(λy).yy. Then

sMN = (λu, v, w).uw(vw)MN

=β (λw).Mw(Nw)

=β (λw).(λy).yy(λy).yy

However, note that this is not a normal form since we can apply β-reduction to the

subterm (λy).yy(λy).yy. We can see that in fact it is not equivalent to any normal form

and hence sMN ↑, so this is not even an opca.

The Term Model of Inside First Reduction

Another term model built from normal forms over CL(C) is the term model of left most

inner most reduction. This is a reduction strategy, that is, a canonical way of reducing a

term of CL(C) to normal form. We define it in the following way, essentially following

the example in section 6.11 of [5]. We start by defining a partial operation on CL(C).

Definition 2.5.16. We define a sequence of partial operators, REDn for each n as fol-

lows:

For n = 0, define RED0 as follows:

1. if t is a normal form, RED0(t) = t

2. for t = krs where r and s are normal forms, RED0(krs) = r

If REDn has been already been defined, then we define REDn+1 as follows:

1. if REDn(t) ↓, then REDn+1(t) = REDn(t)
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2. for t = srsu, where r, s, and u are normal forms,

REDn+1(srsu) ' REDn(REDn(ru) REDn(su))

3. if t = rs and neither of previous cases apply, then

REDn+1(rs) ' REDn(REDn(r) REDn(s))

We then define RED as

RED =
⋃
n∈ω

REDn

Note that if RED(t) is defined, then it is a normal form.

We now define our pca, T

Definition 2.5.17. Let T be the set of normal forms of CL(C) together with the follow-

ing application:

s.t := RED(s.t)

(undefined if RED(s.t) is undefined)

Note that since this is an applicative structure (in the sense of definition 2.1.1) we can

define the notion of terms over T . Fortunately we are free to switch between thinking of

terms and terms over T by the following proposition.

Proposition 2.5.18. Suppose that t is a closed term over T (in the sense of definition

2.1.5) and write t∗ for the corresponding term (in the sense of definition 2.5.9). Then

RED(t∗) is defined if and only if t denotes, and in this case we have

RED(t∗) = t

Proof. This appears as parts (i) and (ii) of lemma 6.1.1 in chapter VI of [5]. However,

we include a proof here for completeness.

We prove this by induction on t.
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First suppose that t is an element of T . Then t∗ is a normal form and so RED(t∗) =

t∗ = t.

Now suppose that t = t1.t2. Then by the definition of terms over T , t ↓ if and only if

t1 ↓, t2 ↓, and t1.t2 ↓. By induction, t1 ↓ if and only if RED(t∗1) is defined and t2 ↓

if and only if RED(t∗2) is defined. Note that by the definition of RED, RED(t∗1t
∗
2) '

RED(RED(t∗1) RED(t∗2)) (split into cases where t∗1 and t∗2 are both normal forms and

where one of them isn’t). In particular if RED(t∗1t
∗
2) is defined then both RED(t∗1) and

RED(t∗2) are defined. We can easily see that RED(t∗1t
∗
2) = t1.t2 if both sides are defined,

so the result follows.

Proposition 2.5.19. T is a pca.

Proof. Note firstly that s and k are normal terms and hence elements of T .

If r and s are normal forms, then so are kr and srs. Hence kr ↓, sr ↓, and srs ↓. Also

RED(krs) = r, so krs = r.

It remains only to check that for all r, s, t, srst ' rt(st). However this is clear from the

definition. (In fact the left hand side is defined at stage n+ 1 if and only if the right hand

side is defined at stage n.)

Some Lemmas

Suppose that θ is a function from C to C. Then we can consider it as the following

notion of reduction:

Θ := {(c, θ(c)) | c ∈ C}

Lemma 2.5.20. If M →w L and M →Θ M ′, then there is L′ such that L �Θ L′ and

M ′ →w L
′. That is, we have the following diagram.

M
w //

Θ
��

L

Θ����
M ′

w
// L′
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Proof. Suppose first that the redex in M →w L is of the form sM1M2M3. If the redex

in M →Θ M ′ occurs in none of M1, M2, or M3 then the two reductions “commute,”

so we trivially get the result. Suppose that the redex in M →Θ M ′ occurs in M3. Note

that the contractum in the s-reduction is M1M3(M2M3), and so we can apply the same

Θ-reduction to each copy of M3 to get the result. We can similarly deal with the case

when the Θ-redex occurs in M1 or M2.

We can do the same thing if the redex in M →w L is of the form kM1M2.

Lemma 2.5.21.

M w //

Θ ����

L

Θ����
M ′

w
// // L′

Proof. This follows from the previous lemma by a diagram chase.

Lemma 2.5.22. Suppose that M ∈ CL(C) and a, b ∈ C are such that a 6= b and

Ma =w b. Then for any c ∈ C, Mc =w b.

Proof. Let c ∈ C. Since a 6= b, we can define θ such that θ(b) = b and θ(a) = c.

Note that since b is a w-normal form, we can use the Church-Rosser theorem to show

that Ma � b. We can apply Θ reduction to Ma to get Mc, and so by the previous

lemma we get that Mc �w L where b �Θ L. However, L must be equal to b, since b

itself is its only subterm and θ(b) = b. Hence Mc�w b as required.

Note that as long as we know for all x, y ∈ C either x = y or x 6= y the above proof is

valid constructively.

2.6 Class Order Partial Combinatory Algebras

In definition 2.1.1 we defined an applicative structure in terms of a set, A. However, in

many theorems this isn’t strictly necessary, and the same proofs work if we instead take

A to be a class.
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Definition 2.6.1. A class applicative structure, A, is a class A, together with a class

ternary relation, ·. Formally A is a formula with one free variable, and · a formula with

three free variables, φ(x, y, z), such that φ(x, y, z) ∧ φ(x, y, z′) implies z = z′.

Formally we defined · as a formula with three free variables, φ(x, y, z). We view it as a

partial binary operation as follows.

x.y ↓ is the formula (∃z)φ(x, y, z) and x.y = z is the formula φ(x, y, z). This allows

us to treat class applicative structures as if they are (set) applicative structures and to use

the same notation as before.

We can now define class order pcas.

Definition 2.6.2. A class order partial combinatory algebra (copca) is a class applicative

structure with a class binary relation ≤ which is reflexive and transitive, together with

distinguished elements s and k such that

1. If a, b, a′, b′ ∈ A with a ≤ a′ and b ≤ b′, then a.b � a′.b′.

2. For all a, b ∈ A, kab � a.

3. For all a, b ∈ A, sab ↓.

4. For all a, b, c ∈ A, sabc � ac(bc).

Proposition 2.6.3. Suppose that t(x) is a term. Then there is a term t∗ that does not

contain the free variable x such that t∗ ↓ and for all a ∈ A

t∗a � t(a)

Proof. In proposition 2.2.3 we constructed explicitly the term t∗.

This term still works as required. For example, consider the inductive step, ie t(x) =

t1(x)t2(x). Then by our definition in the proof of proposition 2.2.3 we have that t∗ =
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st∗1t
∗
2. Since t∗1 ↓ and t∗2 ↓, we get that t∗ ↓ and for all a ∈ A,

t∗a = st∗1t
∗
2a

� (t∗1a)(t∗2a)

� t1(a)t2(a)

= t(a)

Theorem 2.6.4. Theorem 2.3.5 still holds for class order pcas, A.

Proof. Let A′ ⊂ A be the sub order pca generated by s and k. That is s,k ∈ A′ and

whenever e, f ∈ A we also have e.f ∈ A. Then we can apply theorem 2.3.5 to A′ to

construct pairing and projection elements and numerals. These still function as required

in A, so we get the result.

We will study class order pcas in more detail in chapter 4.

2.7 Constructive Set Theory

In this section we see three set theories with intuitionistic logic. The first of these, IZF

can be regarded as “ZF without excluded middle.”

Definition 2.7.1. IZF is the theory with (intuitionistic logic and) the following axioms:

1. Extensionality

2. Separation

3. Pairing

4. Union

5. Infinity
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6. Power Set

7. ∈-induction

8. Collection

Collection is the following schema:

(∀c ∈ a)(∃y)φ(x, y)→ (∃z)(∀c ∈ a)(∃y ∈ z)φ(x, y)

Compare this with the schema (equivalent in ZF) Replacement:

(∀c ∈ a)(∃!y)φ(x, y)→ (∃z)(∀c ∈ a)(∃y ∈ z)φ(x, y)

Definition 2.7.2. IZFR is the set theory with the axioms of IZF except that it has Re-

placement instead of Collection.

IZF is extremely powerful. In fact Friedman showed in [12] that it has the same con-

sistency strength as ZF. On the other hand, IZF has some pleasing metamathematical

properties that we will see in chapter 8.

Often one may be doing mathematics constructively for philosophical reasons. One may

be an intuitionist: one believes mathematical objects only exist if they can be “mentally

constructed.” One may be a predicativist: one believes that a mathematical object cannot

be constructed until it is defined predicatively - that is without quantifiers whose range

includes the object being constructed. In this case one needs to ensure that the axioms of

the set theory are constructively justified. There are (at least) two ways to go about this:

1. Directly justify each axiom as “true” with philosophical reasoning

2. Find another theory that already has a strong constructive foundation and interpret

your set theory into it

Myhill in [27] took the first approach, introducing the following theories. Both of these

are over a three sorted language with sorts for numbers, sets, and partial functions.
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Definition 2.7.3. CST− is the theory with (intuitionistic logic and) the following ax-

ioms:

1. Extensionality (for sets)

2. Bounded Separation (that is, separation for formulas where quantifiers can only

appear as bounded quantifiers)

3. Pairing

4. Union

5. Exponentiation (that is, given any sets A and B there is a set containing precisely

the functions f : A→ B)

6. Replacement

7. Axioms of Heyting Arithmetic for the number sort

Definition 2.7.4. CST is the theory CST− together with relativised dependent choices

RDC.

In particular Myhill rejected the power set axiom in favour of the weaker exponentiation

axiom because of the more predicative nature of exponentiation. He chose bounded

separation over full separation for the same reason.

CZF arose via the second approach in [1] where Aczel showed that set theory can be

interpreted into the predicative Martin-Löf type theory. Aczel also dropped the three

sorted approach of CST and defined the following theories over the same language as

ZF.

Definition 2.7.5. CZF is the theory with (intuitionistic logic and) the following axioms

1. Extensionality

2. Bounded Separation
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3. Pairing

4. Union

5. Strong Infinity

6. Subset Collection: the schema

(∃c)(∀u)((∀x ∈ a)(∃y ∈ b)ψ(x, y, u)→

(∃d ∈ c)((∀x ∈ a)(∃y ∈ d)ψ(x, y, u) ∧ (∀y ∈ d)(∃x ∈ a)ψ(x, y, u)))

7. ∈-induction

8. Strong Collection: the schema

(∀x ∈ a)(∃y)φ(x, y)→

(∃b)((∀x ∈ a)(∃y ∈ b)φ(x, y) ∧ (∀y ∈ b)(∃x ∈ a)φ(x, y))

Subset collection implies exponentiation and is implied by power set and can be seen

as an “artifact” of the interpretation of set theory into type theory. As an alternative to

subset collection, one may instead assume the equivalent fullness axiom (see section 4.5

of [3]). Given sets A and B, define mv(A,B), the class of multivalued functions as

mv(A,B) := {R ⊆ A×B | (∀a ∈ A)(∃b ∈ B)(a, b) ∈ R}

The fullness axiom can then be stated as follows

(∀A,B)(∃C ⊆ mv(A,B))(∀R)R ∈ mv(A,B)→ (∃S ∈ C)(S ⊆ R)

So essentially this says that the class mv(A,B) is “generated” by some set C. In par-

ticular if we assume the powerset axiom, then mv(A,B) itself is a set, so we can see

that powerset implies fullness. Also note that C has to contain every function from A to

B, because if R is a function and S ⊆ R is a multivalued function then we must have

S = R. Hence fullness implies exponentiation.
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One can see that the fullness axiom asserts the existence of sets for which there is no

apparent definition. In chapter 8 we will see that for the case A = NN, B = N, in fact

there is no suitable set C that is definable within CZF.

CZF is stronger than CST− in two respects: replacement has been strengthened to

strong collection and exponentiation has been strengthened to subset collection.

CZF is regarded today as one of the standard set theories for formalising constructive

mathematics. This is because it is constructively valid because of its interpretation into

type theory and yet can be used to prove mathematically interesting results that do not

hold in weaker theories. For example, in [21] Lubarsky and Rathjen showed that the

theory CZFE that has only exponentiation in place of subset collection does not prove

that the Dedekind reals form a set.

Throughout this thesis, anytime we prove results over set theory, unless otherwise stated

we will be working over CZF.

2.7.1 The Binary Intersection Axiom

One of the axiom schemas of CZF and CST is bounded separation. This states that for

each bounded formula φ the following holds.

(∀X)(∃S)(∀x)(x ∈ S ↔ (x ∈ X ∧ φ(x)))

However, when proving soundness theorems for CZF, it is sometimes easier to work

with the simpler axiom of binary intersection. Binary intersection states that for any sets

a and b, the binary intersection a ∩ b exists. That is,

(∀X, Y )(∃Z)(∀z)(z ∈ Z ↔ (z ∈ X ∧ z ∈ Y ))

Binary intersection is equivalent to bounded separation in the following sense.

Theorem 2.7.6. Let ECST0 be the theory consisting of extensionality, pairing, union,

replacement, and emptyset. Then in ECST0, the binary intersection axiom and bounded

separation are equivalent.



2 BACKGROUND MATERIAL 33

Proof. This is theorem 5.6 in [3].

In particular binary intersection and bounded separation are equivalent in the presence

of the remaining axioms of CZF.

2.8 Inductive Definitions

Many of the structures defined in this thesis can be defined using inductive definitions,

due to Peter Aczel in [2]. We work over CZF.

Definition 2.8.1. An inductive definition is a class Φ of ordered pairs. If (X, a) ∈ Φ, we

call X/a an inference step of Φ.

Definition 2.8.2. We say that a class Ψ is Φ-closed if whenever (X, a) ∈ Φ and X ⊆ Ψ,

we have a ∈ Ψ.

Theorem 2.8.3. Let Φ be an inductive definition. Then there is a smallest Φ-closed class

I(Φ).

A proof appears in [2], as well as in chapter 13 of [3].

We say that I(Φ) is the class inductively defined by Φ.
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Chapter 3

Kripke Realizability Models

In this chapter we define a class of structures that we call Kripke realizability models.

These were developed as a way to understand the constructions that appear in chapter 8.

They generalise realizability and Kripke models for intuitionistic logic.

Generalisations of the different models of intuitionistic logic have already been studied.

Examples of this are triposes developed by Hyland, Johnstone and Pitts in [16] and ap-

plicative topologies developed by Ziegler in [41]. However, Kripke realizability models

may prove easier to construct and use in practice in some situations, the result in chapter

8 perhaps being an example of this. Another related body of work is Lipton’s study in

[19] of the connections between realizability and Beth models.

In most of the following chapters we will use “pure” realizability models where the poset

P in the definition below is trivial. However, in chapter 8 we will make essential use of

the order structure.

3.1 Definition

Suppose that we are given a relational language L with ni-ary relation symbols Ri for

i = 1, . . . , n. Then we define a Kripke realizability model over L as follows.
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Definition 3.1.1. A Kripke realizability model consists of a class order pca, A, and a

poset P , together with inhabited classes Mp indexed by P and classes JRiKp ⊂ A ×

Mni
p satisfying the following conditions. JRiKp is downwards closed with respect to the

ordering on A and if p ≤ q, then JRiKp ⊆ JRiKq.

We callMp the domains of the model.

We define relations p between A and formulas with parameters overMp, as follows.

We read e p φ as “e realizes φ at p.”

e p Ri(a1, . . . , ani
) iff 〈e, a1, . . . , ani

〉 ∈ JRiKp

e p φ ∧ ψ iff (∃e′, e′′)e ≤ pe′e′′ ∧ e′ p φ ∧ e′′ p ψ

e p φ ∨ ψ iff (∃e′, e′′)e ≤ pe′e′′ and

(e′ ≤ 0 ∧ e′′ p φ) ∨ (e′ ≤ 1 ∧ e′′ p ψ)

e p φ→ ψ iff (∀q ≥ p)(∀f ∈ A)f q φ implies e.f q ψ

e p ¬φ iff (∀q ≥ p)(∀f ∈ A)f 6q φ

e p (∀x)φ(x) iff (∀q ≥ p)(∀a ∈Mq)e q φ(a)

e p (∃x)φ(x) iff (∃a ∈Mp)e p φ(a)

We write JφKp to mean the class {e ∈ A | e p φ}.

Note that so far this is only defined when φ is closed. If φ has free variables then we

define it as follows. Let x1, . . . , xn be a list of the free variables in φ. We then define the

universal closure, ∀φ as

∀φ := (∀x1, . . . , xn)φ

We can now define JφKp to be J∀φKp.
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3.2 Soundness Proof

In this section we aim towards the following soundness theorem. We will show the

following for any Kripke realizability model.

Theorem 3.2.1. Suppose that φ is an axiom of intuitionistic predicate logic, then there

is some e ∈ A such that for any p ∈ P , e p φ.

Suppose that φ1,...,φn
ψ

is an inference rule of intuitionistic logic, and for some p ∈ P ,

ei p φi for i = 1, . . . , n. Then there is some f ∈ A only depending on the ei such that

f p ψ.

We first prove a few useful lemmas.

The following two lemmas state that realizability is downwards closed with respect to

the ordering on A and upwards closed with respect to P .

Lemma 3.2.2. For every φ, and every p, JφKp is downwards closed with respect to the

ordering on A.

Proof. We check by induction on φ

This is clear for atomics, conjunction, disjunction, and existential and universal quanti-

fiers by definition.

It remains to check→.

Suppose that e′ ≤ e and e p φ→ ψ. Then suppose that for q ≥ p, f q φ. By the opca

axioms e′.f ≤ e.f . But we know that e.f q ψ, and so by induction this implies that

e′.f q ψ. Hence e′ p φ→ ψ.

Lemma 3.2.3. Suppose that e p φ and q ≥ p. Then e q φ.

Proof. This is again proved by induction on φ. This holds at implication and universal

quantification by definition, and can easily be checked in the other cases.
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Lemma 3.2.4. To show e p φ1 → (φ2 → (. . .→ (φn → ψ) . . .), it is sufficient to show

that for any e1, . . . , en−1 ∈ A, ee1 . . . en−1 ↓, and for any q ≥ p and any e1, . . . , en ∈ A

such that ei q φi, we have ee1 . . . en q ψ.

Proof. We will show this by induction on n.

Suppose that the condition holds. Then we aim to show

e p φ1 → (φ2 → (. . .→ (φn → ψ) . . .)

Note that if we set ψ′ := φn → ψ, then this is the same as showing

e p φ1 → (φ2 → (. . .→ (φn−1 → ψ′) . . .)

By induction, we can show this by checking that the condition holds for φ1, . . . , φn−1, ψ
′.

We do this now.

We easily can see that for any e1, . . . , en−2 in A, ee1 . . . en−2 ↓. Now let q ≥ p and

let e1, . . . , en−1 ∈ A be such that for i ≤ n − 1, ei q φi. We need to show that

ee1 . . . en−1 q ψ′, that is ee1 . . . en−1 q φn → ψ. Let q′ ≥ q, and suppose that

en q′ φn. Note that by lemma 3.2.3 we know that also for i ≤ n − 1, ei q′ φi. In

particular q′ ≥ p, so by our condition we can deduce that ee1 . . . en q′ ψ. But we have

now shown that ee1 . . . en−1 q φn → ψ as required so we can deduce the result.

Lemma 3.2.5. To show e p (∀x1, . . . , xn)φ(x1, . . . , xn), it is sufficient to show that for

any q ≥ p and for any a1, . . . , an ∈Mq, e q φ(a1, . . . , an).

Proof. We again show this by induction on n.

Suppose that the condition holds. Then note that showing

e p (∀x1, . . . , xn)φ(x1, . . . , xn)

is the same as showing

e p (∀x1)(∀x2, . . . , xn)φ(x1, . . . , xn)
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Let q ≥ p and let a1 ∈Mq. We aim to show

e q (∀x2, . . . , xn)φ(a1, x2, . . . , xn)

By induction it is sufficient to check that the condition holds. We now do this.

Let q′ ≥ q, and let a2, . . . , an ∈ Mq′ . By definition we have that a1 ∈ Mq′ . Since

q′ ≥ p, we deduce from our condition that e q′ φ(a1, . . . , an). Hence we do get

e q (∀x2, . . . , xn)φ(a1, x2, . . . , xn)

as required.

Proof of theorem 3.2.1 The axioms of IPL are as follows:

1. φ→ (ψ → φ)

2. (φ→ (ψ → χ))→ ((φ→ ψ)→ (φ→ χ))

3. φ→ (ψ → φ ∧ ψ)

4. φ ∧ ψ → φ

5. φ ∧ ψ → ψ

6. φ→ φ ∨ ψ

7. ψ → φ ∨ ψ

8. (φ ∨ ψ)→ ((φ→ χ)→ ((ψ → χ)→ χ))

9. (φ→ ψ)→ ((φ→ ¬ψ)→ ¬φ)

10. φ→ (¬φ→ ψ)

11. (∀x)φ(x)→ φ(y), where y is free for x in φ(x)

12. φ(y)→ (∃x)φ(x), where y is free for x in φ(x)

Note that φ may have free variables, so what we actually have to check is the universal

closure of each axiom.
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1 We claim

k p φ→ (ψ → φ)

By lemma 3.2.4, it is enough to show that for any q ≥ p, whenever e q φ and f q ψ

we have kef q φ

However, kef ≤ e, so this is clear.

2 We claim that

s p (φ→ (ψ → χ))→ ((φ→ ψ)→ (φ→ χ))

By lemma 3.2.4, it is enough to show that for any q ≥ p, whenever e q φ→ (ψ → χ)

f q φ→ ψ and g q φ we have sefg q χ.

However, sefg ≤ eg(fg), so one can easily check that this is the case. (We also have

that by definition sef ↓ for all e and f .)

3 Suppose that q ≥ p, e q φ, and f q ψ. Then

pef q φ ∧ ψ

Hence

p p φ→ (ψ → φ ∧ ψ)

4 - 8 These are similar to the preceding.

9 Suppose that q ≥ p, e q φ→ ψ and f q φ→ ¬ψ.

Suppose further that for some q′ ≥ q, g q′ φ. Then we would get

e.g q′ ψ

f.g q′ ¬ψ

But this gives a contradiction, so there can’t be any such g. So, for instance, 0 q ¬φ.
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Hence we can find a realizer at p for

(φ→ ψ)→ ((φ→ ¬ψ)→ ¬φ)

10 Suppose q ≥ p, e q φ and f q ¬φ. Then we immediately get a contradiction and

in particular we could deduce

0 q ψ

11 Let I := skk be the identity. Then we claim

I p (∀x)φ(x)→ φ(y)

As mentioned above, what we actually mean is the universal closure of this axiom. With-

out loss of generality we can assume the universal closure is (ignoring any additional

parameters) the following:

I p (∀y)((∀x)φ(x)→ φ(y))

Expanding this out, this means that for q ≥ p and b ∈Mq,

I q (∀x)φ(x)→ φ(b)

So suppose that q′ ≥ q and e q′ (∀x)φ(x). Then in particular, e q′ φ(b).

So we have shown that I q (∀x)φ(x)→ φ(b).

So, as required we can deduce

I p (∀y)((∀x)φ(x)→ φ(y))

12 We claim that

I p φ(y)→ (∃x)φ(x)

More explicitly we need to show,

I p (∀y)(φ(y)→ (∃x)φ(x))
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So what we need is that for q ≥ p and b ∈Mq,

I q φ(b)→ (∃x)φ(x)

Let b ∈ Mq and for q′ ≥ q, e q′ φ(b). Then, e q′ (∃x)φ(x). So we deduce that if

b ∈Mq, then

I q φ(b)→ (∃x)φ(x)

So we can deduce

I p φ(y)→ (∃x)φ(x)

Inference Rules

The inference rules of IPL are

1. φ,φ→ψ
ψ

2. ψ→φ(x)
ψ→(∀x)φ(x)

where x /∈ FV (ψ)

3. φ(x)→ψ
(∃x)φ(x)→ψ where x /∈ FV (ψ)

1 (Modus Ponens) Note first that we can assume that

e p (∀x1, . . . , xn)φ(x1, . . . , xn)

f p (∀x1, . . . , xn)φ(x1, . . . , xn)→ ψ(x1, . . . , xn)

where the free variables for φ and ψ are amongst x1, . . . , xn.

Then for any q ≥ p and a1, . . . , an ∈Mq,

e q φ(a1, . . . , an)

f q φ(a1, . . . , an)→ ψ(a1, . . . , an)

and hence e.f q ψ(a1, . . . , an). So we have shown

e.f p (∀x1, . . . , xn)ψ(x1, . . . , xn)
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2 We show that if e p ψ → φ(x), then

e p ψ → (∀x)φ(x)

So suppose that e p ψ → φ(x). Then, more explicitly (ignoring any additional free

variables) this is

e p (∀x)(ψ → φ(x))

So, if q ≥ p and a ∈Mq, then

e q ψ → φ(a)

Now suppose that q ≥ p and f q ψ. We need to show that for any q′ ≥ q and a ∈Mq′ ,

e.f q′ φ(a). But this is clear from the above, so we can deduce

e.f q (∀x)φ(x)

and so

e p ψ → (∀x)φ(x)

3 We claim that if e p φ(x)→ ψ, then e p (∃x)φ(x)→ ψ. First note as before that

what we actually assume is

e p (∀x)(φ(x)→ ψ)

Now suppose that q ≥ p and f q (∃x)φ(x). Then there is a ∈Mq such that f q φ(a).

But we know from the above that

e p φ(a)→ ψ

And so,

e.f q ψ

So we can deduce

e p (∃x)φ(x)→ ψ
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3.3 Recovering Realizability Models and Kripke Models

Both Kripke models and realizability models as can be recovered from the definition of

Kripke realizability models. Kripke models and realizability models are both defined in

[37] in volume I, chapter 2, section 5 and volume II chapter 4, section 4 respectively.

Definition 3.3.1. A Kripke model is a Kripke realizability model where the opca A is

the trivial one element pca.

Proposition 3.3.2. LetMp for p ∈ P be a Kripke model. Denote the single element of

A as ∗ and write p  φ to mean ∗ p φ. Then we have the following equivalences.

p  Ri(a1, . . . , ani
) iff 〈∗, a1, . . . , ani

〉 ∈ JRiKp

p  φ ∧ ψ iff p  φ ∧ p  ψ

p  φ ∨ ψ iff p  φ ∨ p  ψ

p  φ→ ψ iff ∀q ≥ p, q  φ implies q  ψ

p  ¬φ iff ∀q ≥ p, q 6 φ

p  (∀x)φ(x) iff ∀q ≥ p, (∀a ∈Mq)q  φ(a)

p  (∃x)φ(x) iff (∃a ∈Mp)p  φ(a)

Proof. Note that in the one element pca we have

p = p0 = p1 = 0 = 1 = ∗

and also

∗.∗ = ∗

Hence the two definitions agree by induction on the formula φ.

Definition 3.3.3. A realizability model is a Kripke realizability model where P is the

poset with one element.
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Proposition 3.3.4. Let 〈A,M〉 be a realizability model. Denote the single element of P

as ∗ and write e  φ for e ∗ φ. Then we have the following equivalences.

e  Ri(a1, . . . , ani
) iff 〈e, a1, . . . , ani

〉 ∈ JRiK∗

e  φ ∧ ψ iff ∃e′, e′′ e ≤ pe′e′′ ∧ e′  φ ∧ e′′  ψ

e  φ ∨ ψ iff ∃e′, e′′ e ≤ pe′e′′

(e′ ≤ 0 ∧ e′′  φ) ∨ (e′ ≤ 1 ∧ e′′  ψ)

e  φ→ ψ iff ∀f ∈ A, f  φ implies e.f  ψ

e  ¬φ iff ∀f ∈ A, f 6 φ

e  (∀x)φ(x) iff (∀a ∈M∗)e  φ(a)

e  (∃x)φ(x) iff (∃a ∈M∗)e  φ(a)

Proof. This is again proved by induction on φ.

Note that in fact this is a slight generalisation of the usual definition of realizability

model, since it allows A to be an order pca rather than a pca.
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Chapter 4

Realizability with Proper Classes

In this chapter we will see our first models of CZF. These are broadly similar to earlier

models in [24], [5] and [33] but adapted so that in place of a pca we have a class order

pca. The models in this chapter are “pure” realizability in the sense that the poset P

appearing in the definition of Kripke realizability models is trivial. We start by showing

some examples of copcas that are proper classes. We will then show that for any such

structure we get a model for all the axioms of CZF except for bounded separation. We

then show that if A satisfies a condition that we call uniformity then bounded separation

is also satisfied by the realizability models.

4.1 Uniform Class Order Pcas

Definition 4.1.1. LetA be a class order pca (copca). Say that e ∈ A satisfiesR ⊆ A×A

iff

∀〈f, g〉 ∈ R e.f ↓ and e.f ≤ g

We say that A is uniform if for every set R ⊆ A×A, there is a set X ⊆ A such that

{e ∈ A | e satisfies R} = X≤
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Proposition 4.1.2. Suppose that A is a uniform copca and S ⊆ A × PA is a set. Say

that e weakly satisfies S if for any 〈f,G〉 ∈ S, there is g ∈ G such that e.f ≤ g. Then

there is a set Y ⊆ A such that

{e ∈ A | e weakly satisfies S} = Y ≤

Proof. Let B =
⋃
{G | 〈f,G〉 ∈ S}. Now let C ⊆ mv(S,B) be the set given by the

fullness axiom. Let

C ′ = {m ∈ C | (∀x ∈ m)(∃f,G, g)(x = 〈〈f,G〉, g〉 ∧ g ∈ G)}

Suppose that m ∈ mv(S,B) is such that for all 〈〈f,G〉, g〉 in m, g is in G. Then define

Rm := {〈f, g〉 | ∃G, 〈〈f,G〉, g〉 ∈ m}.

Note that if e satisfies Rm for some m ∈ C ′, then e must also weakly satisfy S, since for

every 〈f,G〉 ∈ S, there is g ∈ G such that 〈〈f,G〉, g〉 ∈ m.

Conversely suppose that e weakly satisfies S. Then let m = {〈〈f,G〉, g〉 | 〈f,G〉 ∈

S, g ∈ G, and e.f ≤ g}. Since e weakly satisfies S, we must have that m ∈ mv(S,B)

and furthermore that e satisfies Rm. Now let m′ ∈ C be such that m′ ⊆ m. Note that we

must have m′ ∈ C ′ and e satisfies Rm′ .

By uniformity, for each m ∈ C ′ we have X such that

{e ∈ A | e satisfies Rm} = X≤

But this means by the above and by strong collection and union we can find Y such that

{e ∈ A | e weakly satisfies S} = Y ≤
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4.2 Examples of Class Order pcas

Example 4.2.1. Any order pca is in particular a class order pca. In this case we auto-

matically get uniformity, since for any R ⊆ A × A, {e | ∀〈f, g〉 ∈ R, e.f ≤ g} is a

set.

Example 4.2.2. Recall from chapter 2 the definition of term model obtained from CL(C)

in example 2.5.13. Then we can easily adapt this definition to make C a proper class.

Let T be the term model obtained by taking C to be the class of all sets.

For a set a, we will write the corresponding constant in CL(C) as a.

We define an ordering on the constants by a ≤ b if b ⊆ a. This ordering is then extended

to T by t.q ≤ t′.q′ if and only if t ≤ t′ and q ≤ q′.

Checking that s and k have the required properties is the same as in 2.5.13.

We now show that this copca is uniform.

Define the support of t, Supp(t) as the set of a such that a appears in t.

Let R ⊆ T × T be a set. Now let

S =
⋃
〈q,r〉∈R

Supp(r)

Define the set, F of “finite unions” of S as

F =
⋃
n∈ω

{
⋃
m<n

f(m) | f : n→ S}

(Note that this set is a superset of S, by setting n = 1 and contains the empty set by

setting n = 0).

We now define the set B of “relevant sets” as follows

B = {
⋃
〈q,r〉∈R

f(〈q, r〉) | f : R→ F}

Now let T0 be the sub copca of T obtained by taking only those constants b such that

b ∈ B.
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We claim that if t satisfies R, then there is some t0 in T0 such that t ≤ t0 and t0 satisfies

R.

We first define the (open) term t′ of CL by replacing each occurrence of some a in t with

distinct free variables x1, . . . , xn. So we have that t′ has free variables x1, . . . , xn each

occurring exactly once and there are a1, . . . , an such that we can recover t by substituting

t = t′[x1, . . . , xn/a1, . . . , an].

Now for each i, we define bi ∈ B such that bi ⊆ ai as follows. By the definition of B,

what we require is some fi : R→ F such that bi =
⋃
〈q,r〉∈R fi(〈q, r〉). We define this fi

as follows

For each 〈q, r〉 ∈ R, we know that t.q ↓, and hence as a term of combinatory logic

t.q must reduce to a normal form, r′ ≤ r. However, since substitutions have no ef-

fect on weak reduction, t′.q must also reduce to a normal form, r′′ and furthermore

r′′[x1, . . . , xn/a1, . . . , an] = r′. By induction on terms we can show that xi must occur

finitely many times in r′′ and each occurrence must correspond to a unique ci,j in r such

that ci,j ⊆ ai. We can now define fi(〈q, r〉) as
⋃
j ci,j .

Since each ci,j ∈ S, we know that fi(〈q, r〉) ∈ F , as required for fi to be a function to

F . Also, this clearly gives that for each j, ci,j ⊆ fi(〈q, r〉) ⊆ ai.

From the above we can see that bi =
⋃
〈q,r〉∈R fi(〈q, r〉) ⊂ ai and so ai ≤ bi. Hence if

we define t0 = t′[b1, . . . , bn/x1, . . . , xn] then t ≤ t0. It remains to show that as claimed,

t0 satisfies R.

Therefore, let 〈q, r〉 ∈ R. We aim to show that t0.q ≤ r. Let r′ and r′′ be the normal

forms of t.q and t′.q as above. Note firstly, that we can apply exactly the same reduction

to normal form to get a normal form r0 of t0.q. Let a be an occurrence of some atom in

r0. Then a either corresponds to some xi in t′ or it does not. (If we don’t have excluded

middle, we can show this by an inductive argument on the length of the reduction to

normal form followed by induction on the definition of terms). If it does not, then it

must correspond to an occurrence of a in r′. But since r′ ≤ r, we know that it must

correspond to some a′ in r with a ≤ a′. On the other hand, if a corresponds to some xi
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in t′, then we know that a = bi, and that it must also correspond to some ci,j in r. But

then ci,j ⊆ fi(〈q, r〉) ⊆ bi, and so a = bi ≤ ci,j.

We can therefore deduce that r0 ≤ r and hence that t0 satisfies R.

Hence if we define X = {t ∈ T0 | ∀〈r, s〉 ∈ R, t.r ↓ and t.r ≤ s}, then the class of

terms satisfying R is precisely X≤ as required.

Proposition 4.2.3. Let A be a uniform copca and A′ ⊆ A a sub copca of A that is

upwards closed. Suppose further that either full separation holds orA′ is definable by a

bounded formula. Then A′ is also uniform.

Proof. Let R ⊆ A′ ×A′. Then in particular R ⊆ A×A. Let X be such that

{e ∈ A | e satisfies R} = X≤

Let

X ′ = X ∩ A′

Suppose e ∈ A′ satisfies R. Then there is e′ ∈ X such that e ≤ e′. However, since A′ is

upwards closed, we also have that e′ ∈ A′ and so e′ ∈ X ′.

Hence A′ is uniform.

Example 4.2.4. In [32], Rathjen constructs a class pca based on E-recursion (as appears

in [28]). He does this by defining D by an inductive definition according to inference

steps below. Formally, the class being defined is the class of triples 〈e, x, y〉 where

{e}(x) = y. In the below, {e}(x1, . . . , xn) = y for n > 1 means that {e}(x1) D 〈e, x1〉,

for 1 < i < n,

{〈e, x1, . . . , xi−1〉}(xi) D 〈e, x1, . . . , xi〉

and that

{〈e, x1, . . . , xn−1〉}(xn) D y

k, s, p, p0, p1, sN , pN , dN , 0, ω, π, σ, pl, i, fa and ab are constant natural numbers.
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{k}(x, y) D x

{s}(x, y, z) D {{x}z}({y}(z))

{p}(x, y) D 〈x, y〉

{p0}(x) D (x)0

{p1}(x) D (x)1

{sN}(n) D n+ 1 if n ∈ N

{pN}(0) D 0

{pN}(n+ 1) D n if n ∈ N

{dN}(n,m, x, y) D x if n,m ∈ N and n = m

{dN}(n,m, x, y) D y if n,m ∈ N and n 6= m

{0}(x) D 0

{ω}(x) D ω

{π}(x, g) D
∏
z∈x

g(z) if g is a function with dom(g) = x

{σ}(x, g) D
∑
z∈x

g(z) if g is a function with dom(g) = x

{pl}(x, y) D x+ y

{i}(x, y, z) D {z ∈ {0} | y = z ∧ y, z ∈ x}

{fa}(g, x) D g(x) if g is a function and x ∈ dom(g)

{ab}(e, a) D h where h is the function given by

dom(h) = a and {e}(x) D h(x)

This construction can be performed within CZF and gives a class pca on the universe

of sets V with application given by

x.y :=

z if there exists z such that {x}(y) D z

undefined otherwise
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We add to this definition the constants U and I and add the following two inference steps

{U}(x) D
⋃

x

{I}(x) D
⋂

x

Call this class pca E

E provides a source of non trivial examples of class order pcas that are not uniform, as

demonstrated by the following proposition.

We work over ZF.

Proposition 4.2.5. Suppose that E has been expanded to a class order pca E′ by adding

a recursive ordering (ie one whose graph is representable in E) such that 1 � 0. Then

E′ is not uniform.

Proof. Let R := {〈0, 0〉}. Suppose that X is a set such that e satisfies R if and only if

e ∈ X≤. Then, since ≤ is recursive, we can construct d such that

de =
⋃
f∈X

{z ∈ {0} | e ≤ f}

Then using excluded middle we get that

d.e =

0 e does not satisfy R

1 e does satisfy R

However, we can now use the fixed point theorem to construct an f such that

f.0 =

0 f does not satisfy R

1 f does satisfy R

This clearly gives a contradiction.

Note that E with the discrete ordering provides one such example of a suitable E′.
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4.3 Realizability over Class Order Pcas

Recall from chapter 3 the definition of realizability model (definition 3.3.3).

Given a class order pca, A, define the class V (A) by the following inductive definition.

Let Φ be the class of pairs 〈X, a〉 where every element of a is of the form 〈e, b〉 where

e ∈ A and b ∈ X . Then let V (A) be the smallest Φ-closed class.

Define

e  a ∈ b iff (∃e′, e′′, c)e ≤ pe′e′′ ∧ 〈e′, c〉 ∈ b ∧ e′′  a = c

e  a = b iff (∃e′, e′′)e ≤ pe′e′′ ∧

∀〈f, c〉 ∈ a e′f  c ∈ b ∧ ∀〈f, c〉 ∈ b e′′f  c ∈ a

e  (∀x ∈ a)φ(x) iff (∀〈f, b〉 ∈ a)e.f  φ(b)

e  (∃x ∈ a)φ(x) iff (∃e′, e′′)e ≤ pe′e′′ ∧ (∃〈e′, b〉 ∈ a)e′′  φ(b)

Since we are dealing with classes that could be proper classes, we will be a bit careful

about how this definition works formally, in particular the first two lines.

Let Ψ be the following inductive definition. The elements of Ψ are X/〈s, e, a, b〉 where

one of the following two conditions holds:

1. s = 0 and there are e′, e′′ such that e ≤ pe′e′′, and 〈e′, c〉 ∈ b with 〈1, e′′, a, c〉 ∈ X

2. s = 1, and there are e′, e′′ such that e ≤ pe′e′′ and every element of a is of the

form 〈f, c〉 where 〈0, e′f, c, b〉 ∈ X and every element of b is of the form 〈f, c〉

where 〈0, e′′f, c, a〉 ∈ a

Then e  a ∈ b means that 〈0, e, a, b〉 is in the smallest Ψ-closed class. e  a = b means

that 〈1, e, a, b〉 is in the smallest Ψ-closed class.

Formally, we deal with the last two lines by adding a predicate for each formula of the

form (∀x ∈ a)φ(x) and (∃x ∈ a)φ(x) and defining it as given. We will show later that

they relate in the correct way to unbounded quantifiers.
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4.3.1 Axioms of Equality

In the following, we will need to work inductively on the definition of V (A), so it will

be useful to have a notion of rank that we can induct on.

Definition 4.3.1. The rank, rank(a) of a ∈ V (A) is defined inductively as follows:

rank(a) =
⋃
〈e,b〉∈a

(rank(b) + 1)

Lemma 4.3.2. Suppose that a, b ∈ V (A). If V (A) |= a = b, then rank(a) = rank(b).

Proof. We show by induction that for any α, for any a, b, if V (A) |= a = b and

rank(a) = α, then rank(b) = α.

Let 〈e, c〉 ∈ a. Then there is 〈e′, c′〉 ∈ b such that V (A) |= c = c′. Then rank(c) ∈ α

and so we may assume by induction that rank(c) = rank(c′), and so

rank(c) + 1 = rank(c′) + 1

≤ rank(b)

Hence rank(a) ⊆ rank(b). If 〈e, c〉 ∈ b, then there is some 〈e′, c′〉 ∈ a such that

V (A) |= c = c′. Then we must also have V (A) |= c′ = c and we know that rank(c′) ∈

α. So rank(c) = rank(c′). By the same reasoning as above rank(b) ⊆ rank(a) and so

rank(a) = rank(b).

Proposition 4.3.3. Let A be a copca. Then V (A) satisfies soundness for the axioms of

equality.

Proof. We first check the axioms of identity. We follow the same proof that appears

in [24] and in [33]. We first check the case for atomic formula. Explicitly we find

ir, is, it, i0, i1.

1. ir  a = a
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2. is  a = b→ b = a

3. it  a = b ∧ b = c→ a = c

4. i0  a = b ∧ a ∈ c→ b ∈ c

5. i1  a = b ∧ c ∈ a→ c ∈ b

Let y be as in proposition 2.3.4. Then we define the term ir as

ir := y((λz).p((λx).pxz)((λx).pxz))

Then

ir � p((λx).pxir)((λx).pxir)

In particular we know that ((λx).pxir) ↓, so we can deduce that ir ↓.

We now show by induction that for all a ∈ V (A)

ir  a = a

Let 〈f, b〉 ∈ a. Then by induction we may assume that ir  b = b.

Hence

pf ir  b ∈ a

But

((λx).pxir)f ≤ pf ir

So we have that ir  a = a as required.

Take

is := (λx).p(p1x)(p0x)

Suppose that e  a = b. Then there is e′, e′′ such that e ≤ pe′e′′ and for all 〈f, c〉 ∈ a,

e′.f  c ∈ b and for all 〈f, c〉 ∈ b, e′′.f  c ∈ a. Note therefore that pe′′e′  b = a.



4 REALIZABILITY WITH PROPER CLASSES 57

Then is.e ≤ p(p1e)(p0e). But also p1e ≤ e′′ and p0e ≤ e′ and so is.e ≤ pe′′e′. Hence

is.e  b = a and so is  a = b→ b = a

To construct it, we follow [24] and first consider the following four terms over A.

t0(x, y, z) := ((y)0((x)0z)0)0

s0(w, x, y, z) := w((x)0z)1((y)0((x)0z)0)1

t1(x, y, z) := ((x)1((y)1z)0)0

s1(w, x, y, z) := w((y)1z)1((x)1((y)1z)0)1

We then construct it using the fixed point theorem so that for any e, f , itef ↓, and for

any g,

(itef)0g ≤ pt0(e, f, g)s0(it, e, f, g)

(itef)1g ≤ pt1(e, f, g)s1(it, e, f, g)

We will show by induction on b that for any a, b, c ∈ V (A), and any e, f , if e  a = b

and f  b = c, then itef  a = c.

So suppose that a, b, c and e, f are as above.

Suppose further that 〈g, d〉 ∈ a. Then we know that there must be an element of b of the

form 〈h0, d
′〉 and an element of c of the form 〈k0, d

′′〉 where

(e)0g ≤ ph0h1

(f)0h0 ≤ pk0k1

and

h1  d = d′

k1  d
′ = d′′

Note that d′ is of strictly lower rank than b so by induction we may assume that ith1k1 

d = d′′ and hence that

it((e)0g)1((f)0((e)0g)0)1  d = d′′
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and substituting s0 and t0 we get

pt0(e, f, g)s0(it, e, f, g)  d ∈ c

Similarly we can show that for any 〈g, d〉 ∈ c,

pt1(e, f, g)s1(it, e, f, g)  d ∈ c

Hence we get

itef  a = c

as required.

One can easily construct i0 and i1 from it.

The iφ are constructed by induction on the construction of φ. We will explicitly show

how to do this for unbounded universal quantifiers and implication since these contain

the main ideas.

We first show how to construct iφ→ψ.

Suppose that a, b, c ∈ V (A), e  a = b and f  φ(a, c)→ ψ(a, c). Suppose further that

g  φ(b, c)

Then

iφ(ise)g  φ(a, c)

and so

f(iφ(ise)g)  ψ(a, c)

and finally

iψe(f(iφ(ise)g))  ψ(b, c)

Hence we can take iφ→ψ to be

iφ→ψ := (λx, y, z).iψx(y(iφ(isx)z))
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For unbounded universal quantifiers, we show that we can take i(∀z)φ(x,z) := iφ(x,z).

Suppose that

iφ(x,z)  (∀z)(x = y → (φ(x, z)→ φ(y, z)))

and suppose that for a, b ∈ V (A), e  a = b and

f  (∀z)φ(a, z)

Then for all c ∈ V (A),

f  φ(a, c)

and so

iφ(x,z)ef  φ(b, c)

Hence

iφ(x,z)ef  (∀z)φ(b, z)

as required.

4.3.2 Bounded Quantifiers

Proposition 4.3.4. Bounded quantifiers behave correctly. That is, for each formula, φ

we can find realizers for

1. (∀x ∈ a)φ(x)→ (∀x)(x ∈ a→ φ(x))

2. (∀x)(x ∈ a→ φ(x))→ (∀x ∈ a)φ(x)

3. (∃x ∈ a)φ→ (∃x)(x ∈ a ∧ φ(x))

4. (∃x)(x ∈ a ∧ φ(x))→ (∃x ∈ a)φ(x)
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1 Suppose e  (∀x ∈ a)φ(x). We want to find a realizer for

(∀x)(x ∈ a)→ φ(x)

Hence let b ∈ V (A) and let f be such that

f  b ∈ a

Then we know that there is f0, f1 such that f ≤ pf0f1 and 〈f0, c〉 ∈ a with that

f1  b = c

Applying e above, and noting that (f)0 ≤ f0, we get

e(f)0  φ(c)

Applying iφ from the previous proposition and noting that (f)1 ≤ f1, we get

iφ(f)1(e(f)0)  φ(b)

Hence

(λy).(iφ(y)1(e(y)0))  (∀x)(x ∈ a→ φ(x))

and so

(λz).(λy).(iφ(y)1(z(y)0))  (∀x ∈ a)φ(x)→ (∀x)(x ∈ a→ φ(x))

2 Suppose now that

e  (∀x)(x ∈ a→ φ(x))

Now for every 〈f, b〉 ∈ a, we know that

pf ir  b ∈ a

and so

e(pf ir)  φ(b)

Hence

(λy).(e(pyir))  (∀x ∈ a)φ(x)

So we get

(λz).(λy).(z(pyir))  (∀x)(x ∈ a→ φ(x)→ (∀x ∈ a)φ(x)
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3 Suppose that

e  (∃x ∈ a)φ(x)

Then by definition we know that there are e0, e1 such that e ≤ pe0e1 and 〈e0, b〉 ∈ a with

e1  φ(b)

In particular, we know that b ∈ V (A) and so

p((e)0ir)(e)1  (∃x)(x ∈ a ∧ φ(x))

4 Suppose that

e  (∃x)(x ∈ a ∧ φ(x))

Then there is some b ∈ V (A) such that

(e)0  b ∈ a

(e)1  φ(b)

Hence there is some f0, f1 with (e)0 ≤ pf0f1 and 〈f0, c〉 ∈ a such that

f1  b = c

Since ((e)0)0 ≤ f0 and ((e)0)1 ≤ f1, we deduce

p((e)0)0(iφ((e)0)1(e)1)  (∃x ∈ a)φ(x)

Proposition 4.3.5. Suppose that A is uniform. Then for any a, b ∈ V (A), Ja ∈ bK and

Ja = bK are both generated as the downward closure of sets.

Proof. Suppose first that φ is a ∈ b. Then by collection and union and induction, we may

find a family Pc such that for each 〈f, c〉 ∈ b, Ja = cK = P≤c . Let P = {pfe | 〈f, c〉 ∈

b, e ∈ Pc}. Then one may check that Ja ∈ bK = P≤.
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Now suppose that φ is a = b. Then, we can construct by collection and union a family

Pc such that for every 〈f, c〉 ∈ a, Jc ∈ bK = P≤c . Let

R = {〈f, Pc〉 | 〈f, c〉 ∈ a}

SinceA is uniform, we can apply proposition 4.1.2 and findQ0 such thatQ≤0 is precisely

those elements weakly satisfying R.

However, one can check that this implies

e ∈ Q≤0 iff (∀〈f, c〉 ∈ a)(ef)  c ∈ b

One can similarly construct a Q1. But then let

Q = {pq0q1 | q0 ∈ Q0, q1 ∈ Q1}

But then we can easily see that

Ja = bK = Q≤

Theorem 4.3.6. Let A be a copca. Then V (A) satisfies soundness for all the axioms of

CZF except for separation.

The proof essentially follows that in [33].

Extensionality Let

e = λy.p(λx.p0y(pxir))(λx.p1y(pxir))

One can check that as in [33], this realizes the axiom of extensionality.

Strong Infinity Let n for n ∈ ω be numerals satisfying the conditions in theorem

2.3.5.
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Define ω as follows

n := {〈m,m〉 | m < n}

ω := {〈n, n | n ∈ ω}

We follow [33] in writing ⊥v for the formula (∀x ∈ v)⊥, and writing SC(x, y) for

y = x ∪ {x} (expressed as a bounded formula).

Note that strong infinity amounts to finding realizers for the following two sentences:

(∀v ∈ ω)(⊥v ∨ (∃u ∈ ω)SC(u, y))

(∀v)((⊥v ∨ (∃u ∈ ω̄)SC(u, v))→ v ∈ ω̄)

The first sentence follows from the fact that the numerals n are defined so that there is

some term d such that

dn =

p00 if n = 0

p1n− 1 if n > 0

For the second sentence, since we can clearly find a realizer to show that the empty set

is in ω̄, this is reduced to finding a realizer for

(∀v)(∃u ∈ ω̄)SC(u, v)→ v ∈ ω̄)

Hence we assume that there is a ∈ V (A) with e  (∃u ∈ ω̄)SC(u, a). So there must be

some n such that (e)0 = n and (e)1  SC(n, a).

One can clearly find a realizer for SC(n, n+ 1) and hence a realizer, using the soundness

of extensionality (once we have checked this) for SC(u, v) ∧ SC(u, v′) → v = v′. We

can use these to construct a realizer for a ∈ ω, as required.

Union Given a ∈ V (A), define

Un(a) := {〈pef, c〉 | ∃〈e, b〉 ∈ a, 〈f, c〉 ∈ b}
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Then

(λx).(λy).p(pxy)ir  (∀x ∈ a)(∀y ∈ x)y ∈ Un(a)

and

(λx).p(x)0(p(x)1ir)  (∀x ∈ Un(a))(∃y ∈ a)(x ∈ y)

and so we have a realizer for the union axiom.

Pair Set Given a, b ∈ V (A), define

Pair(a, b) := {〈0, a〉, 〈1, b〉}

Then by the definition of realizability of membership and disjunction, the realizers of

c = a ∨ c = b are precisely the realizers of c ∈ Pair(a, b).

Strong Collection Suppose that

e  (∀x ∈ a)(∃y)φ(x, y)

Then we know that for each 〈f, b〉 ∈ a, there is some c such that e.f  φ(b, c). Using

strong collection in the background universe, we can therefore find a C such that for

every 〈f, b〉 in a there is 〈f, c〉 ∈ C such that e.f  φ(b, c) and such that for every

c ∈ C, there is f ∈ A, b and c′ such that c = 〈f, c′〉, 〈f, b〉 ∈ a and e.f  φ(b, c′). In

particular, C must be an element of V (A). Now note that

(λx).px(e.x)  (∀x ∈ a)(∃y ∈ C)φ(x, y)

and also

(λx).px(e.x)  (∀y ∈ C)(∃x ∈ a)φ(x, y)

and so we can find a realizer for strong collection.
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Subset Collection Fix A,B ∈ V (A). Showing the soundness of subset collection

amounts to finding C ∈ V (A) and a realizer e for

e  (∀u)((∀x ∈ A)(∃y ∈ B)φ(x, y, u)→

(∃z ∈ C)((∀x ∈ A)(∃y ∈ z)φ(x, y, u) ∧ (∀y ∈ z)(∃x ∈ A)φ(x, y, u)))

(and also the realizer should not depend on A or B)

We will show this by applying subset collection in the background universe. To this end,

note firstly that we can construct B̃ by strong collection such that

B̃ = {〈g, b〉 | (∃h)〈h, b〉 ∈ B, (∃a)〈g, a〉 ∈ A}

Now suppose that f, u are such that f ∈ A, u ∈ V (A), and

f  (∀x ∈ A)(∃y ∈ B)φ(x, y, u)

Then in particular we know that for every 〈g, a〉 ∈ A, there are h0, h1 ∈ A and b ∈ V (A)

such that fg ≤ ph0h1, 〈h0, b〉 ∈ B and h1  φ(a, b, u). Note that we also have that

〈g, b〉 ∈ B̃, and that since

p1(fg) ≤ p1(ph0h1)

≤ h1

we can deduce that

(fg)1  φ(a, b, u)

Hence we can apply subset collection in the background universe to find a C ′ such that

whenever the situation above occurs, there is some c ∈ C ′ such that for every 〈g, a〉 ∈ A,

there is b such that

1. 〈k, b〉 ∈ B for some k

2. (fg)1  φ(a, b, u)
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3. 〈g, b〉 ∈ c

Furthermore, we know that every element of c is the form 〈g, b〉 such that the above

conditions hold. Deduce in particular that c ∈ V (A).

However, we can now deduce that

(λx).px(fx)1  (∀x ∈ A)(∃y ∈ c)φ(x, y, u)

and

(λx).px(fx)1  (∀y ∈ c)(∃x ∈ A)φ(x, y, u)

Finally, take

C := {〈0, (c ∩ B̃)〉 | c ∈ C ′}

Then we can see that C ∈ V (A) and by the above reasoning, C is as required to show

the soundness of subset collection, if we take as realizer

e := (λx).p((λy).y(xy)1)((λy).y(xy)1)

∈-induction Suppose that

e  (∀y)((∀x ∈ y)φ(x)→ φ(y))

Let e′ = (λx, y).e.x and let z be the fixed point element from proposition 2.3.4 and

define f := ze′ so we have for all g

f.g � e′.f.g

We will show by induction that for all g ∈ A, f.g ↓ and for all a ∈ V (A), fg  φ(a).

Let a ∈ V (A). By induction we can assume that for all 〈g, b〉 ∈ a, we have

fg  φ(b)

Therefore,

f  (∀x ∈ a)φ(x)
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and so ef ↓ and

ef  φ(a)

But then, for any g ∈ A,

fg � e′fg

� ef

and so fg ↓ and,

fg  φ(a)

Hence,

(λx).(z((λy, w).xy))0  ((∀y)((∀x ∈ y)φ(x)→ φ(y)))→ (∀y)φ(y)

Theorem 4.3.7. Suppose A is uniform. Then V (A) satisfies soundness for CZF.

Proof. The only remaining axiom is bounded separation. It is enough to show the sound-

ness of the binary intersection axiom.

Given A,B ∈ V (A), we must have for each 〈e, a〉 ∈ A, a set Pa such that Ja ∈ BK =

P≤a . By strong collection and union, we can assume this is a function. Define C.

C = {〈pef, a〉 | 〈e, a〉 ∈ A ∧ f ∈ Pa}

Then one can clearly construct a realizer for the statement that any element of C lies in

the intersection of A and B.

Now suppose that 〈e, a〉 ∈ A and that f  a ∈ B. Then there is some f ′ ∈ Pa such that

f ≤ f ′. Hence, pef ≤ pef ′ and so,

(λx, y).p(pxy)ir  (∀x ∈ A)(x ∈ B → x ∈ C)
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However, the statement above is logically equivalent to

A ∩B ⊆ C

and so we can clearly construct a realizer for binary intersection.

4.4 The Natural Numbers and Baire Space in V (A)

An important point worth noting about the soundness theorem is that we explicitly con-

structed a set witnessing the axiom of infinity. That is a set ω with a realizer that ω is the

usual implementation of the natural numbers in set theory. Recall that we constructed ω

as follows. We start with a set N ⊆ A satisfying the conditions in theorem 2.2.5. That

is, N consists of numerals n for n ∈ ω with representable successor, predecessor, and

decision functions. We then define by recursion

n := {〈m,m〉 | m < n}

ω := {〈n, n〉 | n ∈ ω}

We can also explicitly give a nice presentation of Baire space in V (A) as follows. To

make things clearer, we assume that A is a pca rather than a more general copca.

We first fix some notation that will be useful below.

In constructive set theory, as in classical set theory, we implement ordered pairs as fol-

lows:

〈a, b〉 := {{a}, {a, b}}

By following the proof in CZF that ordered pairs exist inside V (A), we already know

that for any a, b ∈ V (A), there must be something that V (A) believes to be the ordered
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pair 〈a, b〉. However, it is convenient to give an explicit witness, which we define as

follows (following [24]):

〈a, b〉 := {〈0, {〈0, a〉}〉, 〈1, {〈0, a〉, 〈1, b〉}〉}

One can then construct an e ∈ A such that

e  〈a, b〉 = {{a}, {a, b}}

(and moreover e does not depend on a or b)

We now (again following [24]) give an explicit construction of the set of functions from

ω to ω.

Definition 4.4.1. f ∈ A is type 1 if for every n ∈ ω, f.n ↓, and there is some m ∈ ω

such that f.n = m

Definition 4.4.2. Given a type 1 f ∈ A we construct f as follows

f := {〈n, 〈n,m〉〉 | n ∈ ω and fn = m}

Proposition 4.4.3. For every f of type 1, there is a realizer in V (A) that f is a function

from ω to ω.

Proof. Let e be a realizer for the statement that 〈a, b〉 is the ordered pair of a and b.

Then note that

(λx).p(fx)(pxe)  (∀n ∈ ω)(∃m ∈ ω)(∃y ∈ f)y = 〈n,m〉

Also see that if 〈n, 〈n,m〉〉, 〈n′, 〈n′,m′〉〉 ∈ f and V (A) |= n = n′, then n = n′, and so

m = m′. Hence we can easily construct a realizer for the statement

(∀x, y ∈ f) First(x) = First(y)→ Second(x) = Second(y)

We can combine these realizers to get a realizer that f is a function.
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Proposition 4.4.4. Suppose V (A) has a realizer stating that f ∈ V (A) is a function on

ω. Then there is a type 1 g ∈ A, such that V (A) |= f = g.

Proof. Since there is a realizer stating that f is a function, we can find a, b, c ∈ A such

that

a  (∀n ∈ ω̄)(∃m ∈ ω̄)〈n,m〉 ∈ f

b  (∀x ∈ f)(∃n,m ∈ ω̄)x = 〈n,m〉

c  (∀n,m,m′)〈n,m〉 ∈ f ∧ 〈n,m′〉 ∈ f → m = m′

Let g := (λx).(ax)0. By the definition of realizability for bounded quantifiers and the

definition of a, g must be type 1.

Now each element of g is of the form 〈n, 〈n, g〉〉. Then by the definition of a, (an)1 

〈n̄, (an)0〉 ∈ f . Hence, (λn).(an)1 is a realizer for g ⊆ f .

Let 〈l, x〉 ∈ f . Then bl  (∃n,m ∈ ω̄)x = 〈n,m〉. Let n = (bl)0,m = ((bl)1)0. As

before, we know that (an)1  〈n, (an)0〉 ∈ f . Also we have that ((bl)1)1  〈n,m〉 ∈ f ,

so we can use c to find a realizer for m = (an)0. This gives a realizer for x = (n, (an)0).

Hence one can construct a realizer for f ⊆ g.

Therefore we have V (A) � f = g as required.

Proposition 4.4.5. V (A) realizes that the following set is the set of all functions from ω

to ω:

A := {〈f, f〉|f : ω → ω}

Proof. This follows from the previous two propositions.

4.5 Models where Powerset Fails

The independence of the power set axiom from CZF is already known and can be found

for instance in [23] and [22]. However, there are few examples of realizability models
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where the powerset axiom does not hold.

The following proposition implies that powerset axiom can only fail in V (A) whenA is

a proper class.

Proposition 4.5.1. Suppose that A is a set and that the power set axiom holds in the

background universe. Then it also holds in V (A).

Proof. Note that by lemma 4.3.2 we know that V (A) |= a ∈ b implies that the rank of a

is less than the rank of b. We apply powerset and induction to show that for any α there

is a set of everything with rank less than or equal to α. Hence the following is a set for

any A ∈ V (A).

P := {〈e, b〉 | e  b ⊆ A}

This is clearly an element of V (A) and is a witness of powerset.

Proposition 4.5.2. Let T be the term model from example 4.2.2. Then the powerset

axiom does not hold in V (T ).

Proof. Assume for a contradiction that the powerset axiom does hold in V (T ).

Define A ∈ V (T ) as

A := {〈∅, ∅〉}

Then by assumption there is some P ∈ V (A) and an e ∈ A such that

e  (∀x)(((∀y ∈ x)y ∈ A)→ x ∈ P

Recall that we define Supp(f) as the set of a such that a appears in f .

Let R be the set of all a such that a occurs in Supp(f) for some 〈g, x〉 ∈ P and 〈f, y〉 ∈

x, and let S be the union of R and Supp(e).

Now choose a such that for any b ∈ S we have a 6⊆ b. For instance, we can take a = S.
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Now let B = {〈a, ∅〉} and note that

(λx).pxir  (∀y ∈ B)y ∈ A

Hence

e(λx).pxir  B ∈ P

Then we can see that there must be 〈(e((λx).pxir))0, z〉 ∈ P such that

(e((λx).pxir))1  B = z

Since B is inhabited, this implies that z is also inhabited. So let 〈f, y〉 be an element

of z. Now note that if we set g := (e((λx).pxir))1f then g is a term of CL(X) that

contains only constants that appear in S. But

g  ∅ ∈ B

Hence (g)0 must be some constant a′ such that a ⊆ a′. But a′ must occur in S so we get

a contradiction.
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Chapter 5

Automorphisms and Their Effect on

Realizability

In this chapter we investigate the automorphism groups of the pcas described in chap-

ter 2. In doing this, the first point to consider is what we should take as the definition

of homomorphism between pcas. For one thing, it is not clear whether or not s and k

should be regarded as constants that are fixed by homomorphisms. The two alternatives

give us two definitions of homomorphisms that we call strong and weak. Furthermore,

Longley in [20] has suggested that the “correct” definition should be even more general

in the sense that application only has to be preserved “up to realizability.” Longley’s

definition, applicative morphism also has the feature of requiring only multivalued func-

tions rather than (well defined) functions. However, we will show that when considering

automorphisms we can disregard this point and work with bijective functions as usual.

In this chapter we will concentrate on more concrete aspects of some of the usual ex-

amples of pcas. The existing body of work that it is closest to is perhaps Bethke’s work

on a class of (strong) homomorphisms called collapses in [7], or Klop’s proof in [8] that

there are pcas that can’t be embedded into any (total) combinatory algebra.

We will define a pca as natural if it can be defined within its own realizability universe

V (A). We will show that K1, K2, and P(ω) satisfy the definition. These pcas all have



5 AUTOMORPHISMS AND THEIR EFFECT ON REALIZABILITY 74

quite tame automorphism groups even for applicative automorphisms.

We also investigate the automorphism groups of D∞ and term models.

5.1 Homomorphisms of Pcas

LetA and B be pcas. Then one can consider the following definitions of homomorphism.

Definition 5.1.1. A weak homomorphism is θ is a function A → B such that for any

e, f , if e.f ↓ then θ(ef) = θ(e)θ(f).

Definition 5.1.2. A strong homomorphism, θ is a weak homomorphism such that θ(s) =

s and θ(k) = k.

Definition 5.1.3 (Longley). An applicative morphism is a function θ : A → P∗(B),

such that there is some r ∈ B such that for all e, f ∈ A and for all e′, f ′ with e′ ∈ θ(e)

and f ′ ∈ θ(f), re′f ′ ∈ θ(ef).

For each of these definitions, there is a corresponding notion of isomorphism, defined

as a homomorphism that has a (2-sided) inverse. Observe that applicative morphisms

need not be functions from A to B. However, when we switch to automorphisms, we

can disregard this issue by the following proposition.

Proposition 5.1.4. Suppose that θ : A → P∗(B) is an applicative isomorphism. Then

there is a bijection θ′ : A → B such that for all e ∈ A, θ(e) = {θ′(e)}.

Proof. Let θ−1 : B → P∗(A) be the inverse of θ. Now suppose that e ∈ A and

f, f ′ ∈ θ(e). Then θ ◦ θ−1(f) = {f}. But θ−1(f) ⊆ θ−1 ◦ θ(e) = {e}. Hence

θ−1(f) = {e} = θ−1(f ′). Therefore we get {f} = θ ◦ θ−1(f) = θ ◦ θ−1(f ′) = {f ′},

and so f = f ′.

We deduce that for every e ∈ A, θ(e) is a singleton. So we can take θ′(e) such that

θ(e) = {θ′(e)}.
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In future we will refer to applicative automorphisms of a pca, A as bijections A → A.

Definition 5.1.5. We say that an applicative morphism θ : A → P∗(B) is decidable if

there is an element d ∈ B such that defining T := (λx, y)y and F := (λx, y)x, we have

that for e ∈ θ(T ), de = T , and for f ∈ θ(F ), df = F .

Proposition 5.1.6. Any applicative isomorphism is decidable.

Proof. Note that

θ−1(F ) = Fθ−1(F )θ−1(T )

and hence, applying θ to both sides,

F = θ(Fθ−1(F )θ−1(T ))

= rθ(Fθ−1(F ))T by the definition of applicative morphism

= r(rθ(F )F )T

However, we can similarly show that

T = r(rθ(T )F )T

Hence we can take

d := (λx).r(rxF )T

5.2 Preservation of Realizability by Homomorphisms

Note that if θ : A → B is an applicative morphism, then we can lift it to an operation θ̃

from V (A) to V (B) by the following inductive definition.

θ̃(a) := {〈e′, θ̃(b)〉 | 〈e, b〉 ∈ a, e′ ∈ θ(e)}

For convenience we will write θ̃ as θ.

Given a formula φ over V (A), we write φθ to mean the formula over V (B) resulting

from replacing each parameter a in φ by θ(a).



5 AUTOMORPHISMS AND THEIR EFFECT ON REALIZABILITY 76

5.2.1 Applicative Morphisms

The preservation of realizability by applicative morphisms was first studied by Longley

in [20] in a category theoretic context. We show in this section that similar results hold

in this context.

Theorem 5.2.1. Suppose that φ is a formula over V (A), without negation, implication,

disjunction, or unbounded universal quantification. Let A and B be pcas. Then there

is rφ ∈ B such that for any applicative morphism θ : A → B with r a realizer for θ,

p′0 ∈ θ(p0) and p′1 ∈ θ(p1), and e′ ∈ θ(e) where e  φ, we have

rφrp
′
0p
′
1e
′  φθ

Furthermore, rφ does not depend on any parameters appearing in φ.

Proof. We will show this by induction on the complexity of φ.

Assume first that φ is atomic.

Construct by the fixed point theorem r∈ and r= satisfying for every e′ ∈ B,

r∈rp
′
0p
′
1e
′ = p(rp′0e

′)(r=rp
′
0p
′
1(rp′1e

′))

r=rp
′
0p
′
1e
′ = p((λx).r∈rp

′
0p
′
1(r(rp′0e

′)x))((λx).r∈rp
′
0p
′
1(r(rp′1e

′)x))

We now show that the theorem holds for atomic formulas by simultaneous induction on

rank.

Suppose that e  a ∈ b, that e′ ∈ θ(e) and that r, p′0 and p′1 are as in the statement of the

theorem. Then we know that there is some c such that 〈(e)0, c〉 ∈ b and (e)1  a = c.

Since e′ ∈ θ(e), we know that rp′0e
′ ∈ θ((e)0), and and rp′1e

′ ∈ θ((e)1). We deduce

that 〈rp′0e′, θ(c)〉 ∈ θ(b), and by induction we can assume also that r=rp
′
0p
′
1(rp′1e

′) 

θ(a) = θ(c). Therefore p(rp′0e
′)(r=rp

′
0p
′
1(rp′1e

′))  θ(a) ∈ θ(b). But by this is equal

to r∈rp′0p
′
1e
′ by construction.
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Now suppose that e  a = b. We aim to show that for any 〈f ′, c′〉 ∈ θ(a),

r∈rp
′
0p
′
1(r(rp′0e

′)f ′))  c′ ∈ θ(b)

First note that there must be some 〈f, c〉 ∈ a such that f ′ ∈ θ(f) and c′ = θ(c). We

know that (e)0f  c ∈ b. Furthermore, note that rp′0e ∈ θ((e)0) and hence r(rp′0e)f
′ ∈

θ((e)0f).

By induction we can deduce that r∈p′0p
′
1(r(rp′0e)f

′)  θ(c) ∈ θ(b). We can simi-

larly show that for any 〈f ′, c′〉 ∈ θ(b), r∈p′0p
′
1(r(rp′1e)f

′)  c′ ∈ θ(a). Therefore

p((λx).r∈p
′
0p
′
1(r(rp′0e)x))((λx).r∈p

′
0p
′
1(r(rp′1e)x))  θ(a) = θ(b) as required.

Now suppose that φ is of the form φ0 ∧ φ1 and that e  φ0 ∧ φ1. Then we know that

(e)0  φ0 and (e)1  φ1. Furthermore, if e′ ∈ θ(e), we know that rp′0e
′ ∈ θ((e)0)

and rp′1e
′ ∈ θ((e)1). By induction we can assume that we have constructed rφ0 and

rφ1 such that rφ0rp
′
0p
′
1(rp′0e

′)  φθ0 and rφ1rp
′
0p
′
1(rp′1e

′)  φθ1. We deduce that

p(rφ0rp
′
0p
′
1(rp′0e

′))(rφ1rp
′
0p
′
1(rp′1e

′))  φθ. Hence we can take

rφ := (λx, y, z, w).p(rφ0xyz(xyw))(rφ1xyz(xzw))

Now suppose that φ is of the form (∀x ∈ a)ψ(x). Let 〈f ′, c′〉 ∈ θ(a). Then we know

that there is some 〈f, c〉 ∈ a such that c′ = θ(c) and f ′ ∈ θ(f). If e  (∀x ∈ a)φ(x), we

know that ef  ψ(c). Furthermore, we know that re′f ′ ∈ θ(ef). By induction we can

assume that there is rψ such that rψrp′0p
′
1(re′f ′)  ψθ(c′). Hence we can take

rφp
′
0p
′
1re
′ := (λx).(rψrp

′
0p
′
1(re′x))

Bounded and unbounded existential quantifiers can be handled similarly.

We now show that if we add in the condition that θ is decidable, then we can also get the

result for disjunctions.

Theorem 5.2.2. Suppose that φ is a formula over V (A), without negation, implication,

or unbounded universal quantification. Let A and B be pcas. Then there is rφ ∈ B such
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that for any decidable applicative morphism θ : A → B with r a realizer and d a decider

for θ, p′0 ∈ θ(p0) and p′1 ∈ θ(p1), and e′ ∈ θ(e) where e  φ, we have

rφrdp
′
0p
′
1e
′  φθ

Furthermore, rφ does not depend on any parameters appearing in φ.

Proof. We show this by induction on the complexity of φ. All the induction steps except

for disjunction are covered by the previous proof.

Assume that φ = φ0 ∨ φ1. Let e  φ and e′ ∈ θ(e). Then either (e)0 = F and

(e)1  φ0, or (e)0 = T and (e)1  φ1. Note that rp′0e
′ ∈ θ((e)0) and that d(rp′0e

′) is

equal to T if (e)0 is equal to T and is equal to F if (e)0 is equal to F . Also we know

that rp′1e
′ ∈ θ((e)1). By induction we can assume that we have rφ0 and rφ1 such that if

(e)1  φ0, then rp′1e
′  φθ0 and if (e)1  φ1 then rp′1e

′  φθ1. Let d be defined using

theorem 2.2.5 so that for all b, b′ ∈ B,

d0bb′ = b

d1bb′ = b′

Then we can take

rφ := (λv, w, x, y, z).(p(y(vwz))((drφ0rφ1(y(vwz)))(v(xz))))

In the following theorem we apply proposition 5.1.4 so that we think of an isomorphism,

θ, as a bijection.

Theorem 5.2.3. Suppose that φ is a formula over V (A). Let A and B be pcas. Then

there is rφ ∈ B such that for any applicative isomorphism θ : A → B with r a realizer

and d a decider for θ, r′ a realizer and d′ a decider for θ−1, and e  φ, we have

rφrdθ(p0)θ(p1)r′d′θ−1(p0)θ−1(p1)θ(e)  φθ

Furthermore, rφ does not depend on any parameters appearing in φ.
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Proof. It only remains to check the induction steps for negation, implication and un-

bounded quantification. We will show implication; the other two cases are similar.

Suppose that φ = φ0 → φ1. By induction assume that we have rφ0 and rφ1 as before.

Now suppose that f  φθ0. By applying the inductive hypothesis to θ−1, if we set

f ′ = rφ0r
′d′θ−1(p0)θ−1(p1)rdθ(p0)θ(p1)θ−1(f)

Then

f ′  (φθ0)θ
−1

= φ0

Hence e.f ′  φ1 and so

rφ1rdrdθ(p0)θ(p1)r′d′xθ−1(p0)θ−1(p1)θ(e.f ′)  φθ1

However note that we have θ(e.f ′) = rθ(e).θ(f ′) and we can express θ(f ′) in terms of

f , and so we can write down a lambda term that realizes φθ0 → φθ1.

5.2.2 Strong Homomorphisms

In this section we suppose that the constants used in the definition of realizability p, p0,

p1, 0 and 1 are constructed from s and k. We can hence assume that they are fixed by

any strong homomorphism.

Theorem 5.2.4. Suppose that φ is a formula over V (A) without negation, implication,

or unbounded universal quantification. Let θ : A → B be a strong homomorphism. If

e  φ then θ(e)  φθ.

Proof. We first show by induction that ∈ and = are preserved.

Suppose that e  a ∈ b. That is, there is some e′, e′′ ∈ A and some 〈e′, c〉 ∈ b such that

e′′  a = c

Then by induction, we may assume that

θ(e′′)  θ(a) = θ(c)
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But we also have that 〈θ(e′), θ(c)〉 ∈ θ(b) and

θ(e) = θ(pe′e′′)

= θ(p)θ(e′)θ(e′′)

= pθ(e′)θ(e′′)

Hence we can deduce that

θ(e)  θ(a) ∈ θ(b)

Now suppose that e  a = b. Then there is some e′, e′′ ∈ A such that for every

〈f, c〉 ∈ a, we have e′f  c ∈ b and for every 〈f, c〉 ∈ b we have e′′f  c ∈ a.

Then any element of θ(a) is of the form 〈θ(f), θ(c)〉, where 〈f, c〉 ∈ a. Hence e′f  c ∈

b and by induction, we may deduce that

θ(e′f)  θ(c) ∈ θ(b)

But θ(e′)θ(f) = θ(e′f)

Similarly, we know that any element of θ(b) is of the form 〈θ(f), θ(c)〉 and that

θ(e′′f)  θ(c) ∈ θ(a)

As before, we also know that

θ(e) = pθ(e′)θ(e′′)

and so

θ(e)  θ(a) = θ(b)

We now proceed by induction on the structure of formulas. Conjunction and disjunction

are clear from the fact that p, 0 and 1 are fixed by θ. It remains to check bounded

quantifiers and unbounded existential quantifiers.

Suppose that

e  (∃x)φ(x)
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Then there is some a ∈ V (A) such that e  φ(a). But then θ(e)  φθ(θ(a)), and so

θ(e)  (∃x)φθ(x)

Now suppose that e  (∃x ∈ a)φ(x). Then there is some element 〈(e)0, c〉 of a such that

(e)1  φ(c). But then

〈(θ(e))0, θ(c)〉 ∈ θ(a)

and

(θ(e))1  φ
θ(θ(c))

and so

θ(e)  (∃x ∈ θ(a))φθ(x)

Now suppose that e  (∀x ∈ a)φ(x).

Then we aim to show θ(e)  (∀x ∈ θ(a))φθ(x).

Every element of θ(a) is of the form 〈θ(f), θ(c)〉 where 〈f, c〉 ∈ a. Hence

ef  φ(c)

and so by induction we may assume θ(ef)  φθ(θ(c)).

Theorem 5.2.5. Suppose that φ is a formula over V (A) and θ : A → B is an isomor-

phism. If e  φ, then θ(e)  φθ.

Proof. We proceed by induction on the construction of formulas. Every case has already

been done in the proof of the previous theorem except for implication and unbounded

universal quantification.

Suppose that

e  φ→ ψ

Then we aim to show that

θ(e)  φθ → ψθ
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To show this, suppose that f  φθ. Then since θ−1 is also an isomorphism, we know by

induction that

θ−1(f)  φ

Hence

eθ−1(f)  ψ

But θ(e)f = θ(eθ−1(f)), so we deduce that

θ(e)f  ψθ

and so

θ(e)  φ→ ψ

as required.

Now suppose that

e  (∀x)φ(x)

Then for any b ∈ V (B) we have θ−1(b) ∈ V (A), and so

e  φ(θ−1(b))

We deduce that

θ(e)  φθ(b)

and so

θ(e)  (∀x)φθ(x)

as required.

5.3 Natural Pcas

For any pca, A we can consider the realizability model V (A), as defined in section 4.3.

Informally, a pca A is natural if it can be defined inside V (A). Before we show the

formal definition of natural, we first recursively define the following operation on V (A)

â := {b̂ | (∃e ∈ A)〈e, b〉 ∈ a}
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Definition 5.3.1. A pca, A, is natural, if there is some A ∈ V (A) and some φ(x) a

formula over V (A) such that

1. for all e ∈ A there is a such that 〈e, a〉 ∈ A

2. for all 〈e, a〉, 〈e′, a′〉 ∈ A, â = â′ implies that e = e′

3. V (A) |= (∃!x)φ(x)

4. V (A) |= φ(A)

5. any parameters in φ(x) are fixed by all applicative automorphisms

Theorem 5.3.2. Suppose that A is a natural pca. Then there are e, e0, e1, e2 ∈ A such

that for any applicative automorphism, α, with realizer r, and realizer r′ for α−1 we

have that for any f ∈ A

err′α(e0)α(e1)α(e2)α−1(e0)α−1(e1)α−1(e2)f = α(f)

Proof. Fix e0, h ∈ A such that

e0  φ(A)

h  φ(x) ∧ φ(y)→ x = y

By proposition 5.2.3 we have some rφ such that for any applicative automorphism α

with realizer r and realizer r′ for α−1, and any f such that f  φ(a),

rφrr
′α(p0)α(p1)α−1(p0)α−1(p1)α(f)  φ(α(a))

(Note that (φ(a))α = φ(α(a)) since any parameters in φ are fixed by α).

Let

g := rφrr
′α(p0)α(p1)α−1(p0)α−1(p1)
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We have in particular that

gα(e0)  φ(α(A))

and so

he0(gα(e0))  A = α(A)

Let g′ = he0(gα(e0)). Then for any 〈f, a〉 ∈ A there is 〈(g′f)0, b〉 ∈ α(A) such that

(g′f)1  a = b. Since 〈(g′f)0, b〉 ∈ α(A), we know that there is some 〈f ′, a′〉 ∈ A such

that (g′f)0 = α(f ′) and b = α(a′). Then â = b̂ = ˆα(a′). But ˆα(a′) = â′ and so â′ = â.

By condition 2 of the definition of natural this means that f ′ = f . But we have now

shown that α(f) = (g′f)0. But by condition 1 in the definition of natural we have this

for any f ∈ A.

Hence we can take

e1 := p0

e2 := p1

and define e so that

err′α(e0)α(e1)α(e2)α−1(e0)α−1(e1)α−1(e2) = (λx).(g′x)0

(Note that we defined g and g′ so that they depend only on r, r′, α(e0), α(e1), α(e2),

α−1(e0), α−1(e1) and α−1(e2).)

We immediately get the following corollaries.

Corollary 5.3.3. The applicative automorphisms of a natural pca are precisely the rep-

resentable permutations.

So in particular, any automorphism of K1 is computable, and any automorphism of K2

or P(ω) is continuous. The following proposition shows that for natural pcas, automor-

phisms, since they are representable, have little effect on realizability structure.



5 AUTOMORPHISMS AND THEIR EFFECT ON REALIZABILITY 85

Proposition 5.3.4. Suppose that α : A → A is an automorphism and both α and α−1

are representable. Then for any a ∈ V (A) we have V (A) |= a = α(a). Moreover, the

same realizer works for any a ∈ V (A).

Proof. Let a ∈ V (A) and suppose that e ∈ A is such that for any 〈f, b〉 ∈ a,

e  b = α(b)

Then for any 〈f, b〉 ∈ a,

pα(f)e  b ∈ α(a)

and for 〈α(f), α(b)〉 ∈ α(a),

pf(ise) = pα−1(α(f))(ise)  α(b) ∈ a

Now note that by the fixed point theorem and the representability of α and α−1, we can

construct e ∈ A such that for any f ∈ A,

(e)0f ' pα(f)e

(e)1f ' pα−1(f)(ise)

However, note that we can now use ∈-induction and the above argument to show that for

any a ∈ V (A),

e  a = α(a)

Corollary 5.3.5. The group of applicative automorphisms of a natural pca, A (and

hence also of weak and strong automorphisms) has cardinality less than or equal to that

of A.

Corollary 5.3.6. Let A be a natural pca. Then there is some finite set e1, . . . , en ∈ A

with the following property.

Suppose that α and β are weak automorphisms of A such that for each i α(ei) = β(ei)

and α−1(ei) = β−1(ei). Then α = β.
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Proof. Note that weak automorphisms are precisely applicative automorphisms where

the identity, I := skk is a realizer.

Hence using the same notation as in the statement of theorem 5.3.2, for every f ∈ A,

α(f) = eIIα(e0)α(e1)α(e2)α−1(e0)α−1(e1)α−1(e2)f

= eIIβ(e0)β(e1)β(e2)β−1(e0)β−1(e1)β−1(e2)f

= β(f)

5.4 Automorphisms of K1

Theorem 5.4.1. K1 is natural.

Proof. Let ω = {〈n, n〉 | n ∈ ω}. We saw in section 4.4 that this appears as the natural

numbers in V (A). Hence take A = ω and φ(x) to be the formula stating that x is the

natural numbers. This clearly satisfies the necessary conditions.

5.4.1 Weak Automorphisms of K1

The definition of weak homomorphism is much more restrictive than that of applicative

morphism. One might ask therefore whether any non trivial weak automorphisms of K1

even exist. We will show that the group of weak automorphisms is nontrivial.

We will adapt the proof of the following theorem due to Blum. (This appears in [29].)

Theorem 5.4.2 (Blum). Let A = 〈N, .A〉, B = 〈N, .B〉 be K1 under different encod-

ings. Then there is a θ : N → N such that θ is bijective and ∀m,n ∈ N, θ(m.An) =

θ(m).Bθ(n).

Proof. We first construct for each α : N→ N recursive, θα such that

α(m.An) ' θα(m).Bα(n) (5.4.1)
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Define α−1 such that α−1(m) is the least n with α(n) = m. Since there is an algorithm

to find this, α−1 is partial recursive, and it can be found recursively from α.

Note that if α is a bijection, then the above condition is equivalent to either of the two

below

α(m.Aα
−1(n)) ' θα(m).Bn (5.4.2)

α−1(θα(m).Bα(n)) ' m.An (5.4.3)

We define θα in stages, θsα, so that θα =
⋃
s θ

s
α. At each stage we add an extra element

to the domain, ensuring that θsα is injective. At odd stages, we ensure that at some point

every element of N is in the domain of θα, and that equation (5.4.2) holds for every n, for

m the element added to the domain. At even stages we ensure that at some point every

element of N is in the image of θα, and that equation (5.4.3) holds for every n for m the

element added to the domain.

For s + 1 odd, let m be the least element of N not in the domain of θsα. Note that

there are infinitely many m′ encoding in B the recursive function α ◦ (m.A) ◦ α−1.

Furthermore, it can be shown that it is possible to recursively enumerate infinitely many

of these m′. Hence we can find recursively such an m′ that is not in the image of θsα. Let

θs+1
α (m) = m′.

For s + 1 even, let m be the least element of N not in the image of θsα. Note that there

are infinitely many m′ encoding in A the function α−1 ◦m.B ◦α. Similarly to before we

can find recursively one such m′ that is not in the domain of θsα. Let θs+1
α (m′) = m.

Since θα can be found recursively from (an encoding of) α, it must have a fixed point,

θ. We know by construction that θθ is bijective satisfying (5.4.2) for numbers added at

odd stages and (5.4.3) for numbers added at even stages. But this means equation (5.4.1)

applies everywhere, as required.

Corollary 5.4.3. Let m1, . . . ,mk and n1, . . . , nk be finite lists of integers. Then there is

some weak automorphism θ such that for each i, θ(mi) 6= ni.
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Proof. First note we can take A = B.

Note that for s + 1 odd we constructed θsα by enumerating an infinite list of m′ such

that m′ encodes the function α−1 ◦m. ◦ α and choosing one that not in the image of θsα.

We can simply require that in addition, if there is some i such that m = mi, then m′ is

not equal to ni. We can then carry through the rest of the proof to construct a suitable

automorphism.

5.5 K2 is Natural

We will now show that K2 is natural, in fact that K2 is definable in V (K2) as NN.

The idea here is that functions from N to N in the realizability model correspond to type

1 elements (definition 4.4.1) of K2, so we need to show that we can switch between type

1 elements and actual functions in a representable way. We do this with the following

two lemmas.

Lemma 5.5.1. There is an element, f , of K2 such that for every h ∈ K2, and every

n ∈ ω

fhn = h(n)

where n is the function constantly equal to n

Proof. Define f as follows

f(l) =


hn + 2 ∃k, n, hi l = 〈〈k, n〉, h1, . . . , hn〉

0 ∃k, n, hi, n′ n′ < n and l = 〈〈k, n〉, h1, . . . , hn′〉

1 otherwise

Then

fh(l) =

h(n) + 1 ∃k, n l = 〈k, n〉

0 otherwise



5 AUTOMORPHISMS AND THEIR EFFECT ON REALIZABILITY 89

and so

fhn(k) = h(n)

That is

fhn = h(n)

Lemma 5.5.2. There is an element, g, of K2 with the following property. Let h ∈ K2 be

such that for every n, hn is defined and of the form hn for hn ∈ ω. Then (gh)(n) = hn.

Proof. Define g as follows

g(l) =

 hk ∃n, k, hil = 〈n, h1, . . . , hk〉k = 〈0, n, . . . , n〉

0 otherwise

Then

gh(n) = hn(0)

= hn

Definition 5.5.3. Recall from section 4.4 that given g of type 1 we can define g. If f is

as above, then for any h ∈ K2, fh is of type 1. Hence we can define

ĥ := fh

Theorem 5.5.4. K2 is natural, with A given by

A = {〈h, ĥ〉|h : ω → ω}

where f̄ ∈ V (K2) is as in section 4.4.

Proof. Recall that in proposition 4.4.5 we showed that if

B := {〈h, h〉|h : ω → ω}
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then there is a realizer that B is the set of all functions from ω to ω.

However, note that by the definition of ĥ we can use lemmas 5.5.1 and 5.5.2 to construct

a realizer for A = B. But then by substitution this gives us a realizer for the statement

that A is the set of functions ω to ω.

Theorem 5.5.5. KREC
2 is natural.

Proof. Note that all the functions we used in the proof were computable, so exactly the

same proof applies to KREC
2 .

5.6 Automorphisms of P(ω)

Firstly note that since weak automorphisms are only required to preserve the applicative

structure P(ω) we don’t know a priori that they also fix the order structure, ie that they

are order preserving with respect to ⊆. We will first establish that this is the case and in

fact even applicative automorphisms must be order preserving.

Unfortunately we require excluded middle in order to prove this.

Proposition 5.6.1. The empty set, X = ∅ is the unique X ∈ P(ω) such that there exists

D,Z ∈ P(ω) such that Z 6= X and for all Y ∈ P(ω)

DY =

X Y = X

Z Y 6= X

Proof. If X = ∅, then take

Z = ω

D = {〈s, n〉 | s is inhabited, n ∈ ω}

One can easily check that these work as required.
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For the converse, we first show that X 6= ω, so assume for a contradiction that X = ω.

Since Z 6= X , we therefore know that there is some n ∈ X \ Z. Since DX = X , we

deduce that there must be some 〈s, n〉 ∈ D. Now if we regard s as a set, we know that

since it is finite we must have s 6= ω = X , so Ds = Z. But we also have that n ∈ Ds

giving a contradiction.

Now that we have established that X 6= ω, we know that there is some X ′ with X ( X ′.

Now assume further for a contradiction that there is also some X ′′ such that X ′′ ( X .

Then DX ′′ ⊆ DX ⊆ DX ′ and so Z ⊆ X ⊆ Z, giving Z = X , a contradiction.

Therefore X = ∅.

Proposition 5.6.2. Suppose that α is an applicative automorphism. Then α(∅) = ∅.

Proof. Let D be as in the first part of the proof of the previous proposition, and let R

be a realizer for α as an applicative morphism. Let D′ = (λx).Rα(D)x. Then for any

Y ∈ P(ω),

D′Y = Rα(D)Y

= Rα(D)α(α−1(Y ))

= α(Dα−1(Y ))

=

α(∅) α−1(Y ) = ∅

α(ω) α−1(Y ) 6= ∅

=

α(∅) Y = α(∅)

α(ω) Y 6= α(∅)

Also, since α is a bijection, we know that α(ω) 6= α(∅). We deduce from proposition

5.6.1 that α(∅) = ∅.

Proposition 5.6.3. LetX, Y ∈ P(ω). ThenX ⊆ Y if and only if there is some S ∈ P(ω)

such that S∅ = X and SX = Y .
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Proof. Assume first that X ⊆ Y . Then note that we can take

S = {〈∅, n〉 | n ∈ X} ∪ {〈{n},m〉 | n ∈ X,m ∈ Y }

This is clearly as required.

For the converse assume that S is such that S∅ = X and SX = Y . Then ∅ ⊆ X and so

S∅ ⊆ SX , giving that X ⊆ Y .

Proposition 5.6.4. Suppose that α is an applicative automorphism. Then α is order

preserving.

Proof. Let X, Y ∈ P(ω) be such that X ⊆ Y . Then there is some S ∈ P(ω) such that

S∅ = X and SX = Y . Let R be a realizer for α as an applicative morphism and let

S ′ := (λx).RSx

Then

S ′∅ = Rα(S)∅

= Rα(S)α(∅)

= α(S∅)

= α(X)

and

S ′α(X) = Rα(S)α(X)

= α(SX)

= α(Y )

Hence α(X) ⊆ α(Y ).
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In particular, since ω is uniquely defined as the top element of P(ω), we now know that

for any applicative automorphism, α, α(ω) = ω.

Lemma 5.6.5. There is an E ∈ P(ω) such that given X ⊆ ω,

EX{n} =

 ∅ n /∈ X

ω n ∈ X

Proof. Let E = {〈{n}, 〈{n},m〉〉|n,m ∈ ω}

Lemma 5.6.6. There is an F ∈ P(ω) such that for any Y ⊆ ω,

FY = {n ∈ ω|Y {n} 6= ∅}

Proof. Let F = {〈{〈{n},m〉}, n〉|n,m ∈ ω} ∪ {〈{〈∅,m〉}, n〉|n,m ∈ ω}.

Suppose first that for some m 〈∅,m〉 ∈ Y . Then for every n, m ∈ Y {n}, so Y {n} 6= ∅.

Also we have that for every n, 〈{〈∅,m〉}, n〉 ∈ F and hence n ∈ FY . But then the result

follows.

Now suppose that for every m, 〈∅,m〉 /∈ Y .

Assume that there is some m ∈ Y {n}. Then we know that 〈s,m〉 ∈ Y for some

s ⊆ {n}. But the only such subsets are ∅ and {n}, and we have ensured 〈∅,m〉 /∈ Y .

Hence, 〈{n},m〉 ∈ Y . This implies that n ∈ FY .

Now assume that n ∈ FY . Then, since we have ensured 〈∅,m〉 /∈ Y for any m, we must

have that 〈{n},m〉 ∈ Y for some m. But this implies that Y {n} 6= ∅.

Therefore the result also follows in this case, as required.

Theorem 5.6.7. The graph model, P(ω) is natural.

Proof. Define

Σ := {〈∅, ∅〉, 〈ω, {〈∅, ∅〉}〉}

and let

A = {〈X, X̄〉 | X ∈ P(ω)}
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where X̄ is the (standard) function from ω to Σ in V (P(ω)) given by

X̄(n) =

〈∅, ∅〉 n /∈ X

〈ω, {〈∅, ∅〉}〉 n ∈ X

Let φ(x) be the formula over V (P(ω)) stating that x is the set of functions from ω to Σ.

Then we clearly have V (P(ω)) � (∃!x)φ(x). Also, A clearly satisfies the first two parts

of the definition of natural. It remains only to show that V (P(ω)) � φ(A).

Let b ∈ V (P(ω)) and suppose that there is a realizer showing that b is a function from

ω to Σ. Then, reasoning inside V (P(ω)), we can find a realizer, e, for (∀n ∈ ω̄)∃x(x ∈

Σ) ∧ b(n) = x. But then we must have

(e{n})0 =

 ∅ b(n) = ∅

ω b(n) = {〈∅, ∅〉}

Now we can apply lemma 5.6.6 to find the set X = {n|(e{n})0 = ω}. Then we must

have ̂̄X = b̂, and so we can easily find a realizer for X̄ = b, and hence for b ∈ a. This

gives a realizer for b is a function ω → Σ implies b ∈ A.

Now let X̄ ∈ A. Then if E is as in lemma 5.6.5, we have

EX{n} =

 ∅ n /∈ X

ω n ∈ X

But we can clearly use this to construct a realizer showing that X̄ is indeed a function

from ω to Σ.

Therefore we have a realizer for the statement that the elements of A are precisely the

functions from ω to Σ, and noting that Σ is fixed by all automorphisms, we deduce that

P(ω) is natural.

Theorem 5.6.8. P(ω)c.e. is natural.

Proof. Note that any sets we constructed in the above proofs were computably enumer-

able, and hence we can apply exactly the same proof as before to show that P(ω)c.e. is

natural.
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5.6.1 The Automorphisms of P(ω) in More Detail

For the case of P(ω) we can in fact characterise the weak automorphisms exactly as

those that lift in a canonical way from permutations of ω.

Definition 5.6.9. We say that Y ∈ P(ω) is a successor of X ∈ P(ω) if X ⊆ Y and

there is no Z ∈ P(ω) such that X ( Z ( Y .

Theorem 5.6.10. For every applicative automorphism, α, of P(ω), there is some per-

mutation π : ω → ω such that for all X ∈ P(ω), α(X) = {π(n) | n ∈ X}.

Proof. Firstly note that the singleton sets are precisely the successors of the empty set.

Therefore, since α is order preserving and fixes the empty set, we know that α must

also preserve the singletons. Therefore there is some permutation π such that α({n}) =

{π(n)} for all n. Now note that for any n, and any X ∈ P(ω) we have that n ∈ X if and

only if {n} ⊆ X . Since α and α−1 are order preserving we know that α({n}) ⊆ α(X) if

and only if {n} ⊆ X . Then n ∈ X iff {n} ⊆ X iff α({n}) ⊆ α(X) iff {π(n)} ⊆ α(X)

iff π(n) ∈ α(X). So the result follows.

Note that any such permutation lifts uniquely to a continuous bijection of P(ω) and that

any representable bijection of a pca gives an applicative automorphism. Hence the group

of applicative automorphisms ofP(ω) is precisely the symmetric group of ω, with action

given as in the theorem.

Theorem 5.6.11. Let π be a permutation of ω such that for every s, n ∈ ω, 〈πs, π(n)〉 =

π(〈s, n〉) (here πs means think of s as encoding a finite subset of ω and apply π point-

wise). Then π lifts to a weak automorphism, α, of P(ω).

Proof. Let π be a permutation satisfying the given condition, with α : P(ω) → P(ω)
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given by α(X) = πX . Then for any X, Y ∈ P(ω),

α(X).α(Y ) = {n|〈s, n〉 ∈ α(X), s ⊆ α(Y )}

= {n|〈s, n〉 ∈ πX, s ⊆ πY }

= {n|π−1(〈s, n〉) ∈ X, π−1s ⊆ Y }

= {n|〈π−1s, π−1(n)〉 ∈ X, π−1s ⊆ Y }

= {π(n)|〈s, n〉 ∈ X, s ⊆ Y }

= α(X.Y )

In fact this the same condition is necessary for π to lift to an weak automorphism.

Theorem 5.6.12. Let π be a permutation of ω such that π lifts to a weak automorphism

of P(ω). Then for any s, n ∈ ω, 〈πs, π(n)〉 = π(〈s, n〉).

Proof. Let π be a permutation of ω that lifts to a weak automorphism of P(ω), and let

s, n ∈ ω.

Note that for any m,

{〈s, n〉}.{m} =

 {n} m ∈ s

∅ m /∈ s

Since π lifts to a weak automorphism we know that

{π(〈s, n〉)}.{π(m)} =

 {π(n)} m ∈ s

∅ m /∈ s

Since pairing is surjective there must be s′, n′ ∈ ω such that π(〈s, n〉) = 〈s′, n′〉. Hence,

{π(〈s, n〉)}.{π(m)} =

 {n′} π(m) ∈ s′

∅ π(m) /∈ s′

But this implies that n′ = π(n) and s′ = πs and so π(〈s, n〉) = 〈πs, π(n)〉.
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In [4] the following encodings of finite sets and pairs are chosen and fixed throughout:

A finite set of naturals a1, . . . , an is encoded as
∑n

i=1 2ai (ie the number whose binary

expansion has 1 precisely at the digits ai).

A pair 〈n,m〉 is encoded as 1
2
(n+m)(n+m+ 1) +m.

Proposition 5.6.13. For any a, b, we have a′ < 〈a, b〉 for all a′ ∈ a and b ≤ 〈a, b〉 with

equality iff a = ∅ and b = 0 (in which case 〈a, b〉 = 0).

Proof. Let a′ ∈ a. Then a ≥ 2a
′
> a′. Note in particular that this implies a ≥ 1.

〈a, b〉 =
1

2
(a+ b)(a+ b+ 1) + b

≥ 1

2
a(a+ 1)

≥ 1

2
a(1 + 1)

≥ a

> a′

As mentioned above, if a 6= ∅, then a ≥ 1, and so

〈a, b〉 =
1

2
(a+ b)(a+ b+ 1) + b

≥ 1 + b

> b

If b ≥ 1, then

〈a, b〉 =
1

2
(a+ b)(a+ b+ 1) + b

≥ 1 + b

> b

But the only case remaining is a = ∅ and b = 0, as required.

Theorem 5.6.14. For the encodings given above, there are no nontrivial permutations

of the naturals satisfying the condition given in theorem 5.6.12.
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Proof. Let π : ω → ω be a bijection such that for all n,m ∈ ω, π(〈n,m〉) = 〈πn, π(m)〉

(where πn means think of n as a finite subset and apply π pointwise).

Note that 〈∅, 0〉 = 0. Hence, π(0) = π(〈∅, 0〉) = 〈∅, π(0)〉. Therefore, if π(0) = m,

then we know that

m =
1

2
(0 +m)(0 +m+ 1) +m

=
1

2
m(m+ 3)

and so either m = 0, or

1

2
(m+ 3) = 1

m+ 1 = 0

but this gives a contradiction since m ∈ ω. So π(0) = 0.

Now, for n > 0, by proposition 5.6.13, we have that n = 〈a, b〉 with b < n and for each

a′ ∈ a, a < n. By induction we can therefore assume that π(b) = b and for each a′ ∈ a,

π(a′) = a′. But then it follows π(n) = π(〈a, b〉) = 〈πa, π(b)〉 = 〈a, b〉 = n.

Hence by induction we can see that π must be the identity.

However, if we carefully construct the encoding of pairs, we can ensure that there are

plenty of permutations satisfying the condition required.

Theorem 5.6.15. There is a (computable) encoding of pairs, (, ), such that for any per-

mutation σ of ω, there is a permutation, π satisfying the condition given in 5.6.12 such

that π((∅, 〈n, 0〉)) = (∅, 〈σ(n), 0〉), where 〈, 〉 is the usual encoding.

Proof. We define (, ) in stages. Let In = {〈i, j〉|i ≤ n, j ∈ ω}

We first decide which pairs, (a, b), will have value in I0

Let ({〈0, a1〉, . . . , 〈0, an〉}, 〈0, b〉) be encoded by the value 〈0, 〈{a1, . . . , an}, b〉〉.
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Now at stage n, we assume by induction that we have found pairs (a, b) for values in In.

We now find pairs that will have values in In+1 \ In.

Note that we can (computably) enumerate pairs (a, b) such that a ⊆ In+1, b ∈ In+1, and

either a * In or b /∈ In. Note further that we can ensure each such pair is listed only

once, such that (a0, b0) = (∅, 〈n + 1, 0〉), and such that ak+1 ⊆ In ∪ {〈n + 1, i〉|i ≤ k}

and bk ∈ In ∪ {〈n + 1, i〉|i ≤ k}. Let (ak, bk) be such an enumeration. Now assign

(ak, bk) the value 〈n+ 1, k〉.

We can see that this does define a computable bijective encoding of pairs.{〈n+ 1, i〉|i <

k}

If we are given a permutation σ : ω → ω, then note that we can define a permutation π, as

required by first ensuring π((∅, 〈n, 0〉)) = (∅, 〈σ(n)〉), and then extending by induction.

As an immediate corollary we get the following result noted before, eg in [5].

Corollary 5.6.16. There are versions of the graph model, P(ω), (using different encod-

ings of pairs) that are non-isomorphic

Proof. We have shown that one encoding gives a graph model with no weak automor-

phisms, and one gives a graph model with uncountably many weak automorphisms.

There clearly can be no weak isomorphisms between these copies of the graph model.

5.7 Some Automorphisms of D∞

We show that automorphisms (in the topological sense) of a directed complete partial

order (dcpo) D lift in a canonical way to automorphisms (in the pca sense) of D∞.
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Theorem 5.7.1. Let α : D → D be an automorphism of a directed complete partial

order, D. Then there is a pca automorphism α̃ : D∞ → D∞ such that α̃ restricted to D

is equal to α.

Proof. We first define automorphisms αi : Di → Di i ∈ N.

Let α0 = α.

If αi is already defined, let αi+1(d) = αi ◦ d ◦ α−1
i .

We can clearly see that each αi is an automorphism of Di.

We now show by induction that for each i, ψi+1(αi+1) = αi.

For i = 0, and for any d ∈ D0

ψ1(α1)(d) = ψ0 ◦ α1 ◦ ϕ0(d)

= ψ0 ◦ α1(ϕ0(d))

= ψ0(α0 ◦ ϕ0(d) ◦ α−1
0 )

= α0 ◦ ϕ0(d) ◦ α−1
0 (⊥)

= α0(ϕ0(d)(α−1
0 (⊥)))

= α0(d)

Now assume that ψi+1(αi+1) = αi and note that we can also assume ψi+1(α−1
i+1) = α−1

i .

Then for any d ∈ Di,

ψi+2(αi+2)(d) = ψi+1 ◦ αi+2 ◦ ϕi+1(d)

= ψi+1 ◦ αi+2(ϕi+1(d))

= ψi+1(αi+1 ◦ ϕi+1(d) ◦ α−1
i+1)

= ψi ◦ αi+1 ◦ ϕi+1(d) ◦ α−1
i+1 ◦ ϕi

= ψi ◦ αi+1 ◦ ϕi ◦ d ◦ ψi ◦ α−1
i+1 ◦ ϕi

= ψi+1(αi+1) ◦ d ◦ ψi+1(α−1
i+1)

= αi ◦ d ◦ α−1
i

= αi+1(d)
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But this implies that α̃ = (⊥, α1, α2, . . .) is an element ofD∞. We can therefore consider

it as a function on D∞ by application.

Note that this operation preserves composition in the sense that if β is also an automor-

phism on D, then for any (di)i∈N ∈ D∞,

α̃.(β̃.d) = α̃.(sup
i
βi(di))

= sup
i

(α̃.βi(di)))

= sup
i

(sup
j
αj(βi(di))j)

= sup
i
αi(βi(di))

= sup
i

(α ◦ β)i(di)

= (̃α ◦ β).d

This then implies that α̃−1 is the inverse of α̃, and hence α̃ is a bijection.

We finally need to show that α̃ preserves application. Let d, d′ ∈ D∞. Then,

(α̃.d).(α̃.d′) = sup
i

(α̃.d)i+1(α̃.d′)i

= sup
i

(αi+1(di+1)(αi(d
′
i)))

= sup
i

(αi ◦ di+1 ◦ α−1
i (αi(d

′
i)))

= sup
i

(αi(di+1(d′i)))

= sup
i

(αi(sup
j
dj+1(d′j))i)

= α̃.(d.d′)

So α̃ is an automorphism, as required.

5.8 Automorphisms of Term Models

Recall from chapter 2 the term models built from Λ(C) and CL(C).

Let α : C → C be a permutation of C. Then α lifts to a permutation of Λ(C) and

CL(C) via induction (say that α fixes λ-terms in Λ(C) and s and k in CL(C)). Since the
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constants play no role in β-reduction or w-reduction this implies that α lifts to a strong

automorphism of the term models defined in section 2.5.3.

This gives us an example of a pca that is not natural.

Proposition 5.8.1. The term model T defined by quotienting CL(N) by w-equivalence

is not natural.

Proof. There are uncountably many permutations on N but T is countable, so we get a

contradiction by corollary 5.3.5.

In fact even very simple strong automorphisms fail to be representable.

Proposition 5.8.2. Given n,m ∈ N such that n 6= m the transposition of m and n is not

representable in T .

Proof. This follows from lemma 2.5.22.

This gives another proof of proposition 5.8.1 since we get a contradiction with corollary

5.3.3.
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Chapter 6

Symmetric Models

6.1 Introduction

Permutation models were introduced by Fraenkel and Mostowski to show that a variation

of ZF, ZFA does not prove the axiom of choice. ZFA differs from ZF in that it allows

a set of atoms in addition to sets. In Fraenkel-Mostowski models there is an infinite set

of atoms that are indistinguishable, resulting in the failure of the axiom of choice.

On developing forcing, Cohen in [11] produced a proof based on similar techniques

showing that the axiom of choice is independent of ZF itself. A variation of Cohen’s

proof based on boolean valued models was developed by Scott and Solovay and Vopěnka

and is described in [6].

In this chapter we show that like boolean valued models, realizability models can also

be adapted to give symmetric realizability models. We will also demonstrate the use of

these symmetric models by giving a proof that countable choice is independent of CZF

(and in fact IZF).

We will use strong automorphisms (definition 5.1.2) throughout this chapter. Since the

other definitions aren’t used in this chapter, we will often refer to them just as automor-

phisms. We will also assume that the constants p, p0, p0, 0 and 1 are constructed from



6 SYMMETRIC MODELS 104

s and k and so are preserved by strong automorphisms. Hence theorem 5.2.5 applies

throughout.

6.2 Definitions

Let G be a group. Then we have the following definitions.

Definition 6.2.1. A class, Γ, is a filter if

1. G ∈ Γ

2. whenever H and K are in Γ, we have H ∩K ∈ Γ

3. whenever H ∈ Γ and H ≤ K, we have K ∈ Γ

Definition 6.2.2. A filter Γ is set generated if there is some set S such that for every

H ⊆ G, H ∈ Γ if and only if there is some K ∈ S such that K ≤ H .

Definition 6.2.3. A class Γ is a normal filter if it is a filter and if in addition, whenever

H ∈ Γ and g ∈ G, we have gHg−1 ∈ Γ.

Example 6.2.4. Let G be a group acting on a set X . Let S be the set of subgroups of the

form StabG(x1)∩ . . . StabG(xn), where x1, . . . , xn ∈ X . Then S is closed under binary

intersection, and generates a normal filter, called the filter of finite support relative to

X . If G also acts on another set Y , then we say X ′ ⊆ X is a support for y ∈ Y if

every g ∈ G that fixes X ′ pointwise also fixes y. If there is a finite such X ′, we say y

is of finite support relative to X . y ∈ Y is of finite support relative to X if and only if

StabG(y) ∈ Γ.

Remark 6.2.5. If we are working constructively then it is important to clarify what we

mean by finite. For finite support, the correct notion is referred to in [3] as finitely

enumerable. A set is finitely enumerable if it is the image of a set of size n for some

n ∈ ω.



6 SYMMETRIC MODELS 105

Example 6.2.6. For any group, G, the set Γ containing only G is a filter. Now if G acts

on a set, X , we can see that StabG(x) ∈ Γ precisely when x is invariant, ie fixed by all

elements of G.

Let A be a pca, and let G be a subgroup of the group of (strong) automorphisms of A.

Then recall that G acts on V (A) by the following inductive definition. Given α ∈ G,

and a ∈ V (A),

α(a) = {〈α(e), α(b)〉 | 〈e, b〉 ∈ a}

Given a group G, and a normal filter Γ we can now define the subclass V Γ(A) of V (A)

consisting of hereditarily symmetric sets. That is, define V Γ(A) using an inductive

definition so that it is the smallest class satisfying the following.

V Γ(A) := {a ∈ V (A) | StabG(a) ∈ Γ ∧ a ⊆ A× V Γ(A)}

V Γ(A) inherits realizability for atomic formulas from V (A). That is, V Γ(A) is the

realizability model with the following relations:

e  a ∈ b iff (∃e′, e′′, c) e ≤ pe′e′′ ∧ 〈e′, c〉 ∈ b ∧ e′′  a = c

e  a = b iff (∃e′, e′′)e ≤ pe′e′′ ∧ (∀〈f, c〉 ∈ a)e′f  c ∈ b ∧

(∀〈f, c〉 ∈ b)e′′f  c ∈ a

e  (∀x ∈ a)φ(x) iff (∀〈f, b〉 ∈ a)e.f  φ(b)

e  (∃x ∈ a)φ(x) iff (∃e′, e′′)e ≤ pe′e′′ ∧ (∃〈e′, b〉 ∈ a)e′′  φ(b)

Also note the following proposition

Proposition 6.2.7. G acts on V Γ(A)

Proof. It is enough to show that for every α ∈ G and a ∈ V Γ(A),

α(a) ∈ V Γ(A)
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Note firstly that for every 〈e, b〉 ∈ α(a), we have that 〈α−1(e), α−1(b)〉 ∈ a. Hence

α−1(b) ∈ V Γ(A). By induction we may assume therefore that b = α(α−1(b)) ∈ V Γ(A).

It remains to show that StabG(α(a)) ∈ Γ.

Let StabG(a) = H . Then since Γ is normal we know that H ′ := αHα−1 ∈ Γ. Let

β′ ∈ H ′. Then β′ = α ◦ β ◦ α−1, where β ∈ H . Therefore

β′(α(a)) = α ◦ βα−1(α(a))

= α(β(a))

= α(a)

We have shown that H ′ ⊆ StabG(α(a)). Hence StabG(α(a)) ∈ Γ as required.

It is also important to note that realizability is preserved by automorphisms (theorem

5.2.5).

6.3 Soundness Theorem

We aim towards the following theorem.

Theorem 6.3.1. Suppose that φ is an axiom of CZF. Then V Γ(A) |= φ.

Definition 6.3.2. If H ∈ Γ and a ∈ V (A), we define the closure ClH(a) of a over H as

follows.

ClH(a) := {〈α(e), α(b)〉 | 〈e, b〉 ∈ a, α ∈ H}

Lemma 6.3.3. Suppose that a ∈ V (A), and that for every 〈e, b〉 ∈ a we have b ∈

V Γ(A). Then for any H ∈ Γ, ClH(a) ∈ V Γ(A).

Proof. Note that every element of ClH(a) is of the form 〈α(e), α(b)〉 where 〈e, b〉 ∈ a.

We know by assumption that b ∈ V Γ(A) and hence also that α(b) ∈ V Γ(A). It remains

only to show therefore that StabG(ClH(a)) ∈ Γ. We will do this by showing that H ≤

StabG(ClH(a)).
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Let β ∈ H . Any element of ClH(a) is of the form 〈α(e), α(b)〉 where 〈e, b〉 ∈ a and

α ∈ H . Then

〈β(α(e)), β(α(b))〉 = 〈β ◦ α(e), β ◦ α(b)〉

Since H is a subgroup, α ◦ β ∈ H and hence 〈β(α(e)), β(α(b))〉 ∈ ClH(a). We have

shown therefore that β(ClH(a)) ⊆ ClH(a), but similarly ClH(a) ⊆ β(ClH(a)). Hence

ClH(a) = β(ClH(a)) and so β ∈ StabG(ClH(a)) as required.

Proof of theorem 6.3.1 We now show that the axioms of CZF hold in V Γ(A) and that

power set and full separation hold if they do so in the background universe.

Firstly note that the proof of extensionality and ∈-induction carry through the same as

in chapter 4. It remains to check infinity, bounded separation, strong collection, subset

collection and union.

Binary Intersection As in theorem 4.3.7 we show the soundness of the binary inter-

section axiom rather than bounded separation. Following the proof of theorem 4.3.7 we

construct a set B such that every element of B is of the form 〈pef, x〉 where 〈e, x〉 ∈ X

and f  x ∈ Y . We now let H = StabG(X) ∩ StabG(Y ) and let

B′ := ClH(B)

By lemma 6.3.3 we have that B′ ∈ V Γ(A). Also, since B ⊆ B′, we can use the same

proof as in 4.3.7 to construct a realizer for

X ∩ Y ⊆ B′

It remains to check that we have a realizer for

B′ ⊆ X ∩ Y

So let 〈pα(e)α(f), α(x)〉 ∈ B′, where 〈pef, x〉 ∈ B and α ∈ H . Then 〈e, x〉 ∈ X and

f  x ∈ Y . Hence 〈α(e), α(x)〉 ∈ X and α(f)  α(x) ∈ Y . We deduce that

(λx).p(p(x)0ir)(x)1  (∀x ∈ B)x ∈ X ∧ x ∈ Y
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as required.

Infinity Note that we can construct numerals from s and k as in chapter 2. Since we

are working with strong automorphisms we know that s and k are fixed and hence that

numerals constructed in this way are fixed by automorphisms. Hence we can assume that

in fact ω (and all its elements) are fixed by all automorphisms. Hence it is already an

element of V Γ(A). The usual proof then shows that it can be used to show the soundness

of infinity.

Union Recall from chapter 4

Un(a) := {〈pef, c〉 | ∃〈e, b〉 ∈ a, 〈f, c〉 ∈ b}

We show that if a ∈ V Γ(A), then Un(a) ∈ V Γ(A). One can easily see that if this is the

case then the same soundness proof as before will apply.

Let 〈pef, c〉 ∈ Un(a). Then there is b such that 〈e, b〉 ∈ a and 〈f, c〉 ∈ b.

Let α ∈ StabG(a). Then since 〈e, b〉 ∈ a and α(a) = a, we know that 〈α(e), α(b)〉 ∈ a.

Furthermore, by definition of the action of G, we know that 〈alpha(f), α(c)〉 ∈ α(b).

Hence we get that 〈pα(e)α(f), α(c)〉 ∈ Un(a). But we have now proved α(Un(a)) ⊆

Un(a). Similarly Un(a) ⊆ α(Un(a)) and so α ∈ StabG(Un(a)). Therefore StabG(a) ⊆

StabG(Un(a)) and so StabG(a) ∈ Γ as required.

Pairing Recall from chapter 4

Pair(a, b) := {〈0, a〉, 〈1, b〉}

Suppose that α ∈ StabG(a) ∩ StabG(b). Then we can easily see that

α ∈ StabG(Pair(a, b))

Hence Pair(a, b) ∈ V Γ(A), and so we can apply the same proof as before.
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Strong Collection Suppose that

e  (∀x ∈ A)(∃y)φ(x, y)

Then for each 〈f, a〉 ∈ A, there is some b ∈ V Γ(A) such that

e.f  φ(a, b)

Hence by strong collection in the background universe there is some C such that for

every 〈f, a〉 ∈ A, there is some c ∈ C such that c is of the form 〈pf(ef), c′〉 where

c′ ∈ V Γ(A) and

e.f  φ(a, c′)

and such that for every c ∈ C there is some 〈f, a〉 ∈ A such that c = 〈pf(ef), c′〉 and

the above statement holds.

Note in particular that every element of C is of the form 〈pf(ef), c′〉 where c′ ∈ V Γ(A).

Now suppose that the parameters in φ are amongst d1, . . . , dn and let H := StabG(A) ∩⋂n
i=1 StabG(di). Note that H ∈ Γ. Now let

C ′ := ClH(C)

Then we know by lemma 6.3.3 and the above thatC ′ ∈ V Γ(A). Note further thatC ⊆ C ′

and so we can easily show that

(λx).p(px(ex))(ex)  (∃y ∈ C ′)φ(x, y)

It remains only to construct a realizer for (∀y ∈ C)(∃x ∈ A)φ(x, y). We claim that this

is realized by the identity, I .

Suppose that c′ ∈ C. Then we know from the definitions that there are 〈e, a〉 ∈ A such

that ef  φ(a, c), α ∈ H and

c′ = 〈α(pe(ef)), α(c)〉
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Since α ∈ StabG(A), we know that 〈α(e), α(a)〉 ∈ A. Furthermore, since α fixes any

parameters in φ, we know that

α(ef)  φ(α(a), α(c))

Hence pα(e)α(ef)  (∃x ∈ A)φ(x, α(c)) and so the identity is a realizer of (∀y ∈

C ′)(∃x ∈ A)φ(x, y) as required.

Subset Collection Fix A,B ∈ V Γ(A). Showing the soundness of subset collection

amounts to finding C ∈ V Γ(A) and a realizer e for

e  (∀u)((∀x ∈ A)(∃y ∈ B)φ(x, y, u)→

(∃z ∈ C)((∀x ∈ A)(∃y ∈ z)φ(x, y, u) ∧ (∀y ∈ z)(∃x ∈ A)φ(x, y, u)))

This is quite similar to the case of subset collection in the proof of theorem 4.3.6 but

with some alterations to ensure that C ∈ V Γ(A).

We will show this by applying subset collection in the background universe. To this end,

note firstly that we can construct B̃ by strong collection such that

B̃ = {〈pgh, b〉 | (∃k)〈k, b〉 ∈ B, (∃a)〈g, a〉 ∈ A, h ∈ A}

Now suppose that f, u are such that f ∈ A, u ∈ V Γ(A), and

f  (∀x ∈ A)(∃y ∈ B)φ(x, y, u)

Then in particular we know that for every 〈g, a〉 ∈ A, there is some b such that (fg)1 

φ(a, b, u) and 〈pg(fg)1, b〉 ∈ B̃.

Hence we can apply subset collection in the background universe to find a C ′ such that

whenever the situation above occurs, there is some c ∈ C ′ such that for every 〈g, a〉 ∈ A,

there is b such that 〈pg(fg)1, b〉 ∈ c and such that every element of c is of this form.
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Note that although c ∈ V (A) as before, we don’t necessarily have that c ∈ V Γ(A). How-

ever, if the parameters of φ are amongst d1, . . . , dn and H = StabG(A) ∩ StabG(B) ∩⋂n
i=1 StabG(di) ∩ StabG(u) then we can take the closure under H . Let

c′ = ClH(c)

Since we know that c ⊆ c′ we can easily show that

(λx).(p(px(fx)1)(fx)1)  (∀x ∈ A)(∃y ∈ c′)φ(x, y, u)

Now note that every element of c′ is of the form 〈α(pgh), α(b)〉 where α ∈ H and there

is a such that 〈g, a〉 ∈ A and h  φ(a, b, u).

Since α ∈ StabG(A) we know that 〈α(g), α(a)〉 ∈ A. Since α ∈ StabG(u) and α fixes

any parameters of φ, we know furthermore that

α(h)  φ(α(a), α(b), u)

Hence we have that the identity, I is a realizer for (∀y ∈ c′)(∃x ∈ A)φ(x, y, u).

This only leaves the problem that we need to construct C before being given u and hence

we don’t have StabG(u). To overcome this we need to use the assumption that Γ is set

generated. Let S be a generating set for Γ. We can now construct

C := ClG({〈0,ClH(c)〉 | c ∈ C ′, H ∈ S, c ⊆ V Γ(A)})

Then, by the above reasoning, C is as required to show the soundness of subset collec-

tion.

∈-induction The proof for theorem 4.3.6 still holds here.

Theorem 6.3.4. Suppose that full separation holds in the background universe. Then it

also holds in V Γ(A).
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Proof. Construct given X and a formula φ, construct

B := {〈pef, x〉 | 〈e, x〉 ∈ X, f  φ}

Then let H be the intersection of X and any parameters appearing in φ. Note that

if α ∈ H , 〈e, x〉 ∈ X , and f  φ then 〈α(e), α(x)〉 ∈ X and α(f)  φ. Hence

H ⊆ StabG(B) and so B ∈ V Γ(A). One can easily construct a realizer to show that B

witnesses this instance of full separation.

Theorem 6.3.5. Suppose that powerset holds in the background universe. Then it also

holds in V Γ(A).

Proof. Note that by lemma 4.3.2 we know that V Γ(A) |= a ∈ b implies that the rank of

a is less than the rank of b. Hence the following is a set for any A ∈ V Γ(A):

P := {〈e, b〉 | e ∈ A, b ∈ V Γ(A), e  b ⊆ A}

This is clearly an element of V Γ(A) and is a witness of powerset.

6.4 Models where Countable Choice Fails

We can use symmetric models to give simple constructive models of set theory where

countable choice fails.

This proof is based loosely on the existing proof that ACω is independent of ZF, which

uses symmetric models and appears, for example in [17] and in [6].

Another result in this area is that a very weak version of AC, ACω,2 is independent of

IZF. This states that every multivalued function from ω to 2 has a choice function. Note

that this follows from excluded middle. Its independence from IZF can be shown using
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Heyting-valued models (see [15]). Rathjen and Ming-Chen in [10] used Lifschitz real-

izability to show that ACω,2 is even independent of IZF if one adds a form of Church’s

thesis.

The proof in this section only shows the independence of ACω but it has the advantage

over some of the others that it requires only CZF as the background universe. It also

illustrates some of the ideas that will appear in chapters 7 and 8.

Theorem 6.4.1. Countable choice is independent of CZF.

Let

X := {ξi | i ∈ ω}

be a countable set of atoms, and let CL(X) be the set of terms over X . Let T be the

term model obtained by quotienting out CL(X) by w-reduction as in chapter 2.

Let G be the group of automorphisms arising from permutations of X , and let Γ be the

normal filter of finite support on X .

For each n ∈ ω, define ñ ∈ V Γ(A) as follows:

ñ := {〈ξm,m | m < n}

We then get the following lemma

Lemma 6.4.2. Suppose that α ∈ G and ξm are such that α(ξm) 6= ξm. Then for n > m

and n > 2, V Γ(A) 6|= α(ñ) = ñ.

Proof. Suppose that e ` α(ñ) = ñ. Then, by the definition of realizability of equality,

we know that there is some 〈((e)1ξm)0, b〉 ∈ α(ñ) such that ((e)1ξm)1  α(m) = b. By

the definition of ñ and the fact that α fixes m, we can deduce that b = m and hence that

((e)1ξm)0 = α(ξm). Letm′ be such thatm′ 6= m andm′ < n. Then we similarly get that

((e)1ξm′)0 = α(ξm′) 6= α(ξm). Therefore by lemma 2.5.22 we get a contradiction.

Now let

R := {〈n, (n, α(ñ))〉 | n ∈ ω, α ∈ G}
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Then we can clearly find a realizers for

(∀x ∈ R)(∃n ∈ ω)(∃y)x = (n, y)

and

(∀n ∈ ω)(∃x ∈ R)(∃y)x = (n, y)

Suppose that there is some R′ ∈ V Γ(A) such that there are realizers for

R′ ⊆ R

and

(∀n ∈ ω)(∀x, y)((n, x) ∈ R′ ∧ (n, y) ∈ R′ → x = y)

Let N be large enough that StabG(ξ1) ∩ . . . ∩ StabG(ξN) ⊆ StabG(R′). Then there is

some r ∈ R′ and α ∈ G such that

V Γ(A) |= r = (N + 2, α(Ñ + 2))

Hence

V Γ(A) |= α−1(r) = (N + 2, Ñ + 2)

Note that

α(Ñ + 2) = {〈α(ξn), n〉 | n < N + 2}

and hence that there must be m,n < N + 2 such that α(ξm) = ξm′ , α(ξn) = ξn′ and

m′, n′ ≥ N . Hence there is an automorphism β ∈ StabG(R′) transposing ξn′ and ξm′ .

Furthermore β(α(Ñ + 2)) 6= α(Ñ + 2), and so α−1 ◦β ◦α(Ñ + 2) 6= Ñ + 2. Applying

6.4.2, this gives that

V Γ(A) 6|= α−1 ◦ β ◦ α(Ñ + 2) = Ñ + 2

We use this to derive a contradiction.

Since β ∈ StabG(R′), we have that β(r) ∈ R′ and hence

V Γ(A) |= (N + 2, β(α(Ñ + 2))) ∈ R′



6 SYMMETRIC MODELS 115

Using the realizer for (∀n ∈ ω)(∃x, y)((n, x) ∈ R′ ∧ (n, y) ∈ R′ → x = y) we deduce

that

V Γ(A) |= α(Ñ + 2) = β(α(Ñ + 2))

and hence

V Γ(A) |= Ñ + 2 = α−1(β(α(Ñ + 2)))

giving a contradiction as required.
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Chapter 7

Symmetric Models over Proper Classes

In this section we combine the techniques of chapters 6 and 4 and produce symmetric

models where the copca we’re working over may be a proper class. Proving the sound-

ness theorem for CZF, in particular the soundness of subset collection presents several

technical challenges. To overcome this we start by giving definitions necessary for han-

dling collections of automorphisms acting on a proper class. Furthermore, we put an

additional restriction on the normal filters that can be used and work over a background

universe of ZF. Unfortunately we were not able to prove many of the lemmas that appear

here over weaker set theories.

7.1 Permutation Families

In order to ensure that the theorems in this chapter can be formalised in ZF we make the

following definitions. These allow us to handle proper classes of automorphisms acting

on proper classes in a way that makes sense in set theory. The following definition is

best thought of as a generalisation of symmetric group, where the group can act on a

proper class M .

Definition 7.1.1. Given a class, M , a permutation family on M indexed by a class, I , is

a formula φ(x, y, z) such that
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1.

(∀x ∈ I)(∀y ∈M)(∃!z ∈M)(φ(x, y, z))

2.

(∀x ∈ I)(∀z ∈M)(∃!y ∈M)(φ(x, y, z))

3.

(∀x, x′ ∈ I)(∃x′′ ∈ I)(∀y, z ∈M)(φ(x′′, y, z)↔

(∃z′ ∈M)(φ(x, y, z′) ∧ φ(x′, z′, z)))

4.

(∃x ∈ I)(∀y ∈M)φ(x, y, y)

5.

(∀x ∈ I)(∃x′ ∈ I)(∀y ∈M)(∃z ∈M)φ(x, y, z) ∧ φ(x′, z, y)

To make this easier to visualise, we use the following notation.

We write (πx)x∈I for a permutation family, and write πx(y) = z for φ(x, y, z). We will

write πx = πx′ to mean that for all y in M , πx(y) = πx′(y).

We write πx′′ = πx′ ◦ πx to mean that for every y in M , πx′′(y) = πx′(πx(y)). Note that

from the definition, for any x, x′ ∈ I there is x′′ such that πx′′ = πx′ ◦ πx.

We write πx′ = π−1
x to mean that for every y in M , πx′ ◦ πx(y) = y and πx ◦ πx′(y) = y.

Note that by the definition, for every x ∈ I , there is x′ ∈ I such that πx′ = π−1
x .

Definition 7.1.2. Say that (π′)x∈I′ is a sub permutation family of (π)x∈I if I ′ is a subclass

of I and (π′)x∈I′ is a permutation family on M indexed by I ′ and is defined by the same

formula φ(x, y, z) as for (π)x∈I .

Given two permutation families on M , (π)x∈I and (π′)x∈I′ , we define the intersection as

a the sub permutation family of (π)x∈I indexed by

{x ∈ I | (∃x′ ∈ I ′)(∀y ∈M)πx(y) = πx′(y)}
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We now define automorphism families.

Definition 7.1.3. An automorphism family of a copca, A is a permutation family on

A that preserves the order and application of the copca as well as s and k. (So this

corresponds to strong automorphisms.)

Permutation families should be regarded as proper class generalisation of symmetric

groups. We therefore define notions of orbit and stabiliser.

The following definitions are defined over a permutation family, G = (πx)x∈I .

Definition 7.1.4. Given y ∈M , define the orbit of y as the class

OrbG(y) := {z ∈M | (∃x ∈ I)πx(y) = z}

Definition 7.1.5. Given y ∈ M , define StabG(y) as the sub permutation family of G

indexed by

I ′ := {x ∈ I | πx(y) = y}

Definition 7.1.6. We say that G is locally small if for every a ∈ M , the orbit of a,

OrbG(a), is a set.

Lemma 7.1.7. Suppose that G is locally small. Then for every set A ⊆M , there is some

G′ a subgroup of G (ie in particular G′ is a set) and set A′ ⊇ A such that

1. for every a ∈ A′ and every g ∈ G′, g(a) ∈ A′

2. for every x ∈ I , there is x′ ∈ I and g ∈ G′ such that πx′ fixes every element of A′

and πx factors πx = πx′ ◦ g

Proof. Suppose that A ⊆M . Then define A′,

A′ := {πx(a) | a ∈ A, x ∈ I}

Note that this is equal to
⋃
a∈A OrbG(a) and so in particular it is a set by local smallness

of G.
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Now define

S := {f : A′ →M | (∃x ∈ I)(∀a ∈ A′)f(a) = πx(a)}

Note that this is a subset of the set of functions from A′ to
⋃
a∈A′ OrbG(a) and so in

particular it is a set.

By collection on S, there is some set I ′ ⊆ I such that for every f in S there is some x in

I ′ such that for every a ∈ A′, f(a) = πx(a).

Now note that we can find some set I ′′ ⊇ I ′ such that I ′′ is closed under composition

and inverses. That is, for every x, x′ in I ′′ there is some x′′ in I ′′ such that πx′′ = πx ◦πx′ ,

and similarly for inverses. We can view I ′′ as a group, G′ by quotienting out by the

equivalence relation given by x ∼ x′ if for every y ∈ M , πx(y) = πx′(y). (Recall that

under this condition we think of πx and πx′ as already being equal.)

We now show that A′ and G′ are as required.

Suppose that x ∈ I . Then there is some f in S such that for every a in A′, πx(a) = f(a).

Hence there is some h ∈ G′ such that for every a in A′, πx(a) = h(a). Now viewing h

as an element of the permutation family, there is x′ such that

πx′ := πx ◦ h−1

We can now clearly see that the conditions are satisfied.

Given an automorphism family, G = (πx)x∈I , we can lift this to a permutation family G′

of V (A) in the same way as for automorphism groups.

Recall that in chapter 6 we made quite heavy use of the closure of an element of V (A)

(definition 6.3.2). We can similarly define closure here and show that it has similar

properties to before.

Definition 7.1.8. Given a sub automorphism family, H := (π′)x∈I′ of G, and a ∈ V (A),

we define the closure as follows

ClH(a) := {〈π′x(e), π′x(b)〉 | x ∈ I ′, 〈e, b〉 ∈ a}
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Note that as it stands, ClH(a) may be a proper class. We will show that under the

assumption that G is locally small we can show that it is a set.

Proposition 7.1.9. Suppose that G is locally small on A. Then G is also locally small

on V (A).

Proof. For every a ∈ V (A), we define the support Supp(a) recursively as follows

Supp(a) :=
⋃
{{e} ∪ Supp(b) | 〈e, b〉 ∈ a}

Let A := Supp(a). Then note that we can define Vα(A) recursively by

Vα+1(A) := P(Vα(A))

Vλ :=
⋃
β∈λ

Vβ(A)

Then by induction we see that for every α, and for every b ∈ Vα(A) we have that

OrbG(b) ⊆ Vα(A).

But there must be some α such that a ∈ Vα(A) and so OrbG(a) ⊆ Vα(A). However

Vα(A) is a set (by induction and power set), and so OrbG(a) must also be a set.

Hence G is locally small.

If G is locally small, then we can consider stabilisers and closures “locally” as follows.

Proposition 7.1.10. Suppose thatA ⊆M andH are sets such thatH is a subgroup ofG

which acts on A, and that every element of G factors as an element of H and something

fixing A pointwise (as in lemma 7.1.7). Then for a ∈ A,

StabG(a) = {πx ◦ h | (∀a′ ∈ A)πx(a
′) = a′, h ∈ StabH(a), x ∈ I}

Proof. Suppose that x ∈ I is such that for all a′ in A, πx(a′) = a′. Then clearly

πx(a) = a, and so if h ∈ StabH(a), then πx ◦ h ∈ StabG(a).

Now suppose that πx′ ∈ StabG(a). Then there are πx and h such that for all a′ ∈ A,

πx(a
′) = a′, h ∈ H and πx′ = πx ◦ h. Hence h(a) = π−1

x′ (a) = a. That is h ∈

StabH(a).
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Proposition 7.1.11. Suppose that A ⊆ A and H are sets such that H is a subgroup

of G which acts on A, and that every element of G factors as an element of H and

something fixing A pointwise (as in lemma 7.1.7), and that G′ ⊆ G is a sub permutation

family of G. Let H ′ := H ∩ G′. Then H ′ is a subgroup of H and for any a ∈ V (A),

ClG′(a) = ClH′(a).

Proof. Suppose that 〈πx(e), πx(b)〉 ∈ ClG′(a) where 〈e, b〉 ∈ a. Then let πx = πx′ ◦ h

where h ∈ H and πx′ fixes A pointwise. Note in particular that πx′ must also fix V (A)

pointwise (by induction). Hence 〈πx(e), πx(b)〉 = 〈h(e), h(b)〉, and so 〈πx(e), πx(b)〉 ∈

ClH′(a). But we can clearly see that ClH′(a) ⊆ ClG′(a), and so we get the result.

Note in particular that ClH′(a) is a set, so we can deduce that ClG′(a) is a set.

We now define an analogous notion to filter to that in chapter 6. In fact this definition is

closer to that of generating set for the earlier definition of normal filter.

Because we require normal filters, we first show how to define conjugates of permutation

families.

Definition 7.1.12. Suppose that H is a sub permutation family of G = (πx)x∈I and that

g = πx for some x ∈ I . Suppose that H is indexed by I ′ ⊆ I . Then we write gHg−1 to

mean the sub permutation family of G indexed by

I ′′ := {x′′ ∈ I | (∃x′ ∈ I ′)πx′′ = πx ◦ πx′ ◦ π−1
x }

Definition 7.1.13. Let G := (πx)x∈I be a permutation family. Then a filter family, Γ on

G is a formula φ(x, y), and class J such that for any x ∈ J , the class {y | φ(x, y)} is a

subclass of I . Given a sub permutation family, H = (π′x)x∈I′ of G, we write H ∈ Γ to

mean

(∃x ∈ J)(∀y ∈ I)φ(x, y)→ (∃y′ ∈ I ′)(∀z ∈M)πy(z) = π′y′(z)

We require, furthermore, that

1. G ∈ Γ
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2. for sub permutation families H,H ′ of G, if H,H ′ ∈ Γ then H ∩H ′ ∈ Γ

3. if H is a sub permutation family of G and g ∈ G, then H ∈ Γ implies that

gHg−1 ∈ Γ

Definition 7.1.14. Let G := (πx)x∈I be a permutation family on M . Then we define the

finite support filter family as follows. Let J be the class of finite subsets of M . Then

let φ(x, y) state that y consists of the n elements y1, . . . , yn and that for i = 1, . . . , n,

πx(yi) = yi.

Proposition 7.1.15. Suppose that H is a sub automorphism family of G and a ⊆ A ×

V Γ(A). Then H ⊆ StabH(ClH(a)), and hence if H ∈ Γ then ClH(a) ∈ V Γ(A).

7.2 Soundness Theorem

We now define the realizability model and show that we have soundness for CZF. We

work throughout in a background universe of ZF.

Definition 7.2.1. Given a uniform copca A, an automorphism family G = (αx)x∈I on

A and a filter family Γ on G such that for every e ∈ A, StabG(e) ∈ Γ, we define

the class V Γ(A), recursively in the usual way. That is a ∈ V Γ(A) if a ⊆ V Γ(A) and

StabG(a) ∈ Γ.

Theorem 7.2.2. V Γ(A) satisfies the axioms of CZF.

The general idea to adapt the proof of theorem 6.3.1 by looking carefully at the proof.

For union, pairing, binary intersection, strong collection and infinity the proof of theorem

6.3.1 still holds here because when constructing the necessary sets, we never needed to

assume that A was a set. Furthermore, the proof of soundness for extensionality and

∈-induction for theorem 4.3.6 still applies here unchanged.

This only leaves subset collection, which we prove below.
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Recall from the soundness theorem in chapter 4 that given a formula φ(x, u, y) and sets

A,B ∈ V (A) we constructed a set C satisfying the following property. Whenever there

is u ∈ V (A) and e ∈ A such that e  (∀x ∈ A)(∃y ∈ B)φ(x, u, y) there is 〈0, q〉 ∈ C

such that for every 〈f, a〉 ∈ A there is 〈f, b〉 ∈ q such that there exists e′, e′′ ∈ A with

ef ≤ pe′e′′, 〈e′, b〉 ∈ B and e′′  φ(a, u, b), and such that every element of q is of this

form.

Firstly note that we can perform the same construction as before but over V Γ(A) rather

than V (A). This only leaves the problem that we haven’t guaranteed that the q with

〈0, q〉 ∈ C are elements of V Γ(A). We fix this with basically the same idea as for

(set sized) symmetric models as in 6. The main problem here is that since A may be

a proper class, we are not able to construct q so that the elements of q are of the form

〈pfe′′, b〉 where e′′  φ(a, u, b). To overcome this we use the additional assumption that

StabG(e) ∈ Γ for e ∈ A. We will also make use of power set and full separation as well

as the condition that G is locally small.

Let S := Supp(A)∪Supp(B)∪Supp(C). Then apply local smallness to S to get S ′ ⊇ S

and G′ ≤ G such that G′ and S ′ are sets such that G′ acts on S ′ and every element of G

factors as something fixing S ′ and an element of G′.

We can now use power set and full separation to construct the set Γ′ where

Γ′ := {H ′ ≤ G′ | (∃H ∈ Γ)(g ∈ H ′ ↔ (∃x ∈ I)(((∀y ∈ S ′)πx(y) = y)∧πx◦g ∈ H))}

Note that we have constructed this so that for any H ∈ Γ there is some H ′ ∈ Γ′ such

that for any q with 〈0, q〉 ∈ C we have that ClH′(q) = ClH(q).

Now construct C ′ as

C ′ := ClG({〈0,ClH′(q)〉 | 〈0, q〉 ∈ D′, H ′ ∈ Γ′})

We can easily see from construction that this is an element of V Γ(A). It only remains to

check that this can be used to show the soundness of subset collection.
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Suppose that u ∈ V Γ(A) and e ∈ A with e  (∀x ∈ A)(∃y ∈ B)φ(x, u, y). Suppose

that the parameters in φ(x, u, y) are amongst c1, . . . , cn and let

H := StabG(A) ∩ StabG(B) ∩
n⋂
i=1

StabG(ci) ∩ StabG(e) ∩ StabG(u)

Since we required that StabG(e) ∈ Γ, we know thatH ∈ Γ. Let q be such that 〈0, q〉 ∈ C

and such that for every 〈f, a〉 ∈ A there is 〈f, b〉 ∈ q and e′, e′′ ∈ A such that ef ≤ pe′e′′,

〈e′, b〉 ∈ B and e′′  φ(a, u, b). We will show that we can use ClH(q) to witness

subset collection. Since q ⊆ ClH(q), we can use the same proof as in 4 to show that

(∀x ∈ A)(∃y ∈ q)φ(x, u, y).

Now suppose that 〈f, b〉 ∈ q. Then we know that there must be some 〈f, a〉 ∈ A and

some e′, e′′ ∈ A such that ef ≤ pe′e′′, 〈e′, b〉 ∈ B and e′′  φ(a, u, b). Now if α ∈ H ,

we know that 〈α(e′), α(b)〉 ∈ B, and α(e′′)  φ(α(a), u, α(b)). Furthermore, we know

that

eα(f) = α(ef) ≤ pα(e′)α(e′′)

We deduce that we can find a realizer for (∀y ∈ ClH(q))(∃x ∈ A)φ(x, u, y) as required.

7.3 The Weak Presentation Axiom

In [25], Moerdijk and Palmgren introduced a new choice principle that they called the

axiom of multiple choice, AMC. This principle was introduced for being sufficient to

prove some useful results and yet stable under various category theoretic constructions

such as internal sheaf constructions.

In the more recent [38], van den Berg and Moerdijk showed that in fact, in the presence

of another axiom WS, a weaker choice principle suffices to prove the set compact-

ness theorem, a theorem related to inductive definitions and related results about formal

topologies. In [38] the new, weaker axiom is referred to as the axiom of multiple choice.

However, in this chapter we will follow [3] and refer to the new axiom as wPAx and

use AMC to refer to the original axiom of multiple choice. In [38], it is also shown that
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wPAx is stable under various category theoretic constructions including exact comple-

tion, realizability, and sheaves.

In [31], Rathjen notes that the axiom AMC follows from the axiom SVC studied by

Blass in [9] and hence that AMC must hold in most commonly studied models of ZF.

He also shows that assuming the existence of certain large cardinals, it is possible to

construct a model of ZF where AMC and wPAx fail.

In the next section we will construct a model of CZF where AMC fails. We will assume

classical logic in the background universe, and hence the final result is only proved on

the assumption that ZF is consistent.

In the below, let mv(X) be the class of multivalued functions on X . That is, the class of

sets R of ordered pairs such that for every (x, y) ∈ R, x ∈ X , and for every x ∈ X there

is some y such that (x, y) ∈ R. Given R ∈ mv(X), we say that C is a cover for R if is

satisfies

(∀x ∈ X)(∃y ∈ C)((x, y) ∈ R) ∧ (∀y ∈ C)(∃x ∈ X)((x, y) ∈ R)

Definition 7.3.1. A set Y is a small cover base for X if for every R ∈ mv(X), there is

some cover C of R such that for some y ∈ Y there is a surjection f : y � C.

The weak presentation axiom, wPAx, states that every set has a small cover base.

Definition 7.3.2. A set Y is a small collection family if for each y ∈ Y , Y is a small

cover base for y.

The axiom of multiple choice, AMC, states that every set is an element of a small

collection family.

7.4 Independence of wPAx

We show that wPAx is independent of CZF. In order to do this we need to assume a

background universe of ZF throughout this section. Hence, formally the theorem that

we get is the following.



7 SYMMETRIC MODELS OVER PROPER CLASSES 127

Theorem 7.4.1. Suppose ZF is consistent. Then CZF + ¬wPAx is consistent.

We do this by constructing, in ZF, a copca, T , based on the term models and a set based

class of automorphisms, G. We then know that this gives a realizability model satisfying

the axioms of CZF. We then show that ω does not have a small cover base in this model.

Define the class C of constants as the following disjoint union

C0 := {a | (∃a0, a1)(a = 〈a0, a1〉 ∧ a0 ∈ a1)}

C := {0} q C0

We then construct the closed term model using these constants as in example 4.2.2.

However we now define the ordering by saying that a ≤ b when either a = b or b = 0.

We can identify this with a sub copca of the opca in example 4.2.2 by considering 0 as ∅

and a ∈ C0 as the singleton {a}. This sub copca is upwards closed in the original copca

and hence must be uniform by proposition 4.2.3.

Call this copca T .

Let G be the class of automorphisms, α of T such that α(0) = 0 and for every a ∈ C0,

Second(α(a)) = Second(a), and such that the elements of C not fixed by α form a set.

That is, we think of C0 as the disjoint union of columns of size |a1| for any set a1, and

G is those automorphisms that preserve each column.

Formally, we define G as an automorphism family (πx)x∈I as follows. Let I be the

class of pairs 〈A, (τa)a∈A〉 such that for every a in A, τa is a permutation of a. If x :=

〈A, (τa)a∈A〉, then we define its value on C0 as follows

πx(a) :=

〈τa1(a0), a1〉 if a1 ∈ A

a otherwise

We then extend this to T by setting πx(0) = 0, πx(s) = s, πx(k) = k and requiring that

it preserves application.

We now show that T is locally small. Note that for any constant a = 〈a0, a1〉, the orbit

of a under G is the set {〈a′, a1〉 | a′ ∈ a1}. Since any element e of T contains only
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finitely many constants we can easily see that the orbit of e under G is also a set, so G is

locally small.

Let Γ be the finite support filter.

So V Γ(T ) is a realizability model for CZF.

We now prove that wPAx does not hold in V Γ(T ). Suppose V Γ(T ) realizes that a is a

small cover base for ω. Let b be a set (in our background universe) of cardinality greater

than any element of a. We construct R such that V Γ(T ) realizes R ∈ mv(ω), but such

that for any c ∈ V G(T ) such that V G(T ) realizes an image of c covers R, the cardinality

of c is at least that of b. Thus we derive a contradiction and show that ω does not have a

small cover base in V G(T ).

Let a and b be as above, noting that we can assume without loss of generality that b has

a countably infinite subset {bn}n∈ω. For each n ∈ ω, let cn := 〈bn, b〉. We now construct

R.

Following the proof of theorem 6.4.1, for each n ∈ ω, define ñ as follows

ñ = {〈cm,m〉 | m < n}

Note that the proof of lemma 6.4.2 still applies here, and so we get the following.

Lemma 7.4.2. Suppose that α ∈ G and cm are such that α(cm) 6= cm. Then for n > m

and n > 2, V Γ(A) 6|= α(ñ) = ñ.

Now define R

R = {〈n, α(ñ)〉 | n ∈ ω, α ∈ G}

(Note that this is a set since G is locally small).

Now suppose c, f, d ∈ V G(T ) are such that we have realizers for f : c� d and d covers

R.

Let H ≤ G be the intersection of the stabilisers of c, f, d and also any realizers that we

have seen so far. Then since these are of finite support, we know that for n high enough,
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the orbit under H of cn is the column {〈y, b〉 | y ∈ b}minus some finite subset. One can

check that since we ensured b has a countable subset, this implies that for n high enough

|OrbH(α(ñ))| = |b|, for any α ∈ G.

Now working inside V G(T ), we know that there is some m ∈ d such that V (T ) |=

〈n,m〉 ∈ R. Hence there must be some 〈e, l〉 ∈ c and 〈g, (l′,m)〉 ∈ f (in our background

universe), such that we have a realizer for m = α(ñ) for some α ∈ G and a realizer

for l′ = l. Now let β ∈ H , and suppose β(l) = l. Then using the realizer for f

being well defined, we can extract a realizer for β(m) = m, and hence a realizer for

β(α(ñ)) = α(ñ). Since we know from the above that |OrbH(α(ñ))| = |b| and V G(T ) |=

α(ñ) = β(α(ñ))→ α(ñ) = β(α(ñ)), this implies that |OrbH(l)| = |b|. Since we know

that H fixes c, this means that the cardinality of c is at least |b|. But this is exactly what

we require to derive our contradiction, and so we have proved the result.
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Chapter 8

Failure of the Existence Property for

CZF

8.1 Existence Properties

Constructive theories are known for having metamathematical properties that are often

not shared by stronger classical theories such as ZFC. The principles below are amongst

the most well known of these properties.

Recall that constructive mathematicians read logical symbols according to the BHK in-

terpretation. For the constructive mathematician, in order to know the disjunction φ∨ψ,

one must either know φ or know ψ. They therefore often expect their formal theories to

have the following property.

Definition 8.1.1. A theory, T has the disjunction property (DP) if whenever T ` φ ∨ ψ,

either T ` φ or T ` ψ.

In order to know (∃x)φ(x), the constructive mathematician must be able to “construct”

some witness a such that one knows φ(a). We certainly know what it means to construct

an element of ω: we must be able to write down an actual natural number. We also

know what it means to construct a function N → N: we must be able to able to find
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(a number encoding) an algorithm whose graph is that function. Hence the constructive

mathematician expects their formal theories to have the following properties. In the

definitions below we assume that T has a constant ω such that T proves that ω is the

natural numbers and for each n a constant n such that T proves 0 is empty and n+ 1 is

the successor of n. For any theory that could “reasonably” be called a set theory, there

will be at least a conservative extension with this property.

Definition 8.1.2. T has the numerical existence property (NEP) if whenever T ` (∃x ∈

ω)φ(x), there is some natural number n such that

T ` φ(n)

Definition 8.1.3. T is closed under Church’s Rule (CR) if whenever T ` (∀x ∈ ω)(∃y ∈

ω)φ(x, y), there is some natural number e such that

T ` (∀x ∈ ω)φ(x, {e}(x))

(where {e}(x) denotes the result of applying the eth recursive function to x)

What it means to construct higher order objects, such as sets is not always as clear, at

least for relational theories. However, a common interpretation of this is that they should

at least be definable, in the sense below.

Definition 8.1.4. T has the existence property (EP) if whenever T ` (∃x)φ(x), there is

some formula χ(x) that only has free variable x such that

T ` (∃!x)φ(x) ∧ χ(x)

The properties DP, NEP, and CR work extremely well as characterisations of constructive

formal theories. None can hold for consistent recursively axiomatisable theories that

have excluded middle, but on the other hand they hold for a rich variety of constructive

theories.

In [26] Friedman and Myhill showed that IZFR (that is, IZF with replacement instead

of collection), has the existence property. In [27], Myhill showed the set theory CST−
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also has EP and also that both CST− and CST have DP and NEP, leaving open whether

CST has EP. In [13] Friedman and S̆c̆edrov showed that IZFR + RDC has EP, estab-

lishing that even set theories with choice principles can have EP.

Beeson then developed q-realizability, allowing him to show in [5] that NEP, DP, and CR

hold for IZF and IZF + RDC. Rathjen developed realizability with truth based partly

on Beeson’s methods to show in [30] and [34] that DP, NEP, CR and other properties

hold for a wide variety of intuitionistic set theories including CZF, CZF+REA, IZF,

IZF + REA with any combination of the axioms MP, ACω, DC, RDC and PAx.

One can see that EP does not work so well as a characterisation of constructive theories

as the other properties we have seen. As remarked in [30] EP can hold for classical

theories, even extensions of ZFC. On the other hand, Friedman and S̆c̆edrov showed in

[14] that IZF does not have EP.

Friedman and S̆c̆edrov’s proof that EP fails for IZF makes use of full separation and

collection. Since IZFR does have EP, it might seem reasonable to think that collection

is responsible for the failure of EP and the use of full separation is only incidental.

However due to recent work by Rathjen, this turns out not to be the case. Set theories

with collection but only bounded separation can have EP.

In [35] Rathjen defined the following two variations on EP,

Definition 8.1.5. 1. T has the weak existence property, wEP, if whenever

T ` (∃x)φ(x)

there is some formula χ(x) having at most the free variable x such that

T ` (∃!x)χ(x)

T ` (∀x)(χ(x)→ (∃u)u ∈ x)

T ` (∀x)(χ(x)→ (∀u ∈ x)φ(u))

2. T has the uniform weak existence property, uwEP, if whenever

T ` (∀u)(∃x)φ(u, x)
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there is some formula χ(u, x) having at most the free variables u, x such that

T ` (∀u)(∃!x)χ(u, x)

T ` (∀u)(∀x)(χ(u, x)→ (∃z)z ∈ x)

T ` (∀u)(∀x)(χ(u, x)→ ∀z ∈ xφ(u, z))

As remarked in [35], by analysing Friedman and S̆c̆edrov’s proof in [14] one can see

that IZF doesn’t even have wEP. On the other hand any extension of ZF has uwEP -

consider Vα where α is the least ordinal such that Vα contains a witness.

In [35], Rathjen refers to the theories CZF−, CZFE and CZFP . CZF− is CZF with-

out subset collection. CZFE is CZF− with the exponentiation axiom. CZFP is CZF

together with the power set axiom. All three of these theories have strong collection,

and yet Rathjen shows in [35] that all three have uwEP (and hence wEP). In that paper

he refers to a paper in preparation where he will show by using this result together with

ordinal analysis that these three theories in fact have EP.

CZFP , which has EP, is simply IZF with bounded separation in place of full separa-

tion, so the use of full separation in Friedman and S̆c̆edrov’s proof must be essential.

Furthermore, CZF lies between CZFE and CZFP , two theories both satisfying EP and

uwEP.

However, due to problems defining witnesses for the fullness axiom, these proofs do not

apply to CZF itself. Rathjen goes so far as to conjecture in [35] that CZF does not even

have wEP. In this chapter we prove that this conjecture is correct. CZF does not have

wEP, and the fullness axiom is responsible.

8.2 Outline of Proof

The main idea is to prove this using a Kripke realizability model. The poset P has three

elements laid out as follows: •

•
/ �

??

•
/ O

__
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At the top we have a minor variation on V (A), that we call V1(A). One of the other

two domains is V Γ
0 (A), a variation on the symmetric models from chapter 6 that we call

partly symmetric, and one is a new model of injectively presented sets, that we refer to

as V ip
0 (A). To satisfy the definition of Kripke realizability models, we must have the

following inclusions:

V1(A)

V ip
0 (A)

, �

::

V Γ
0 (A)
2 R

dd

We will show that the axioms of CZF are satisfied at all three points.

The key point is proposition 3.2.3 from chapter 3. This says that realizability is “upwards

closed” with respect to P , so that if V ip
0 (A) |= φ(a) for some a, then also V1(A) |= φ(a)

and if V Γ
0 (A) |= φ(b), then V1(A) |= φ(b). Hence if CZF ` (∃!x)φ(x), then V1(A) |=

a = b. We will use this to get a contradiction.

8.3 Realizability at V1(A)

We start by defining V1(A). In fact this model is defined so that realizability at V1(A)

is completely equivalent to the realizability of V (A). However, our adjustment will be

necessary to get soundness at V Γ
0 (A).

We define V1(A), as follows.

V1(A)α+1 = P(2× |A| × V1(A)α)

V1(A)λ =
⋃
β<λ

V1(A)β

V1(A) =
⋃
α∈On

V1(A)α

One can think of V1(A) as things from V (A) with an extra label from 2. Hence given

any element of V1(A) we can think of it as an element of V (A) by ignoring this extra
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label. Explicitly, we define this recursively as follows. Given a ∈ V1(A),

a◦ := {〈e, b◦〉 | 〈s, e, b〉 ∈ a}

We define realizability at V1(A) as follows

e 1 a ∈ b iff e  a◦ ∈ b◦

e 1 a = b iff e  a◦ = b◦

e 1 (∀x ∈ a)φ(x) iff e  (∀x ∈ a◦)φ(x)

e 1 (∃x ∈ a)φ(x) iff e  (∃x ∈ a◦)φ(x)

We then easily get the following proposition.

Proposition 8.3.1. For any φ, e 1 φ if and only if e  φ◦, writing φ◦ to mean the

formula obtained by replacing any parameter a in φ by a◦.

8.4 Realizability at V Γ
0 (A)

This model is essentially the same as we saw in chapter 6. The difference is that sets can

have “asymmetric” elements that can’t be seen until “moving up to V1(A).”

Formally we define V Γ
0 (A) as follows:

Definition 8.4.1. Given a group G of strong automorphisms ofA and set generated nor-

mal filter, Γ, we define the class V Γ
0 (A) ⊆ V1(A), of partly symmetric sets inductively

as follows.

Given a ∈ V1(A), we say a ∈ V Γ
0 (A) if StabG(a) ∈ Γ and for every 〈0, e, b〉 ∈ a we

have b ∈ V Γ
0 (A).

In other words, a, has a “large” stabiliser and every element that has been labelled with

0 is also partly symmetric. Note that this property is preserved by automorphisms, and

one can easily show the following.
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Proposition 8.4.2. If a ∈ V1(A) and α ∈ G is such that α(a) = a, then α(a◦) = a◦.

In particular if we take an element of V Γ
0 (A), then it still has StabG(a) ∈ Γ when we

consider it as an element of V (A).

We can now define realizability at V Γ
0 (A) as follows

e Γ a ∈ b iff ∃〈0, (e)0, c〉 ∈ b (e)1 Γ a = c

e Γ a = b iff ∀〈0, f, c〉 ∈ a (e)0f Γ c ∈ b ∧

∀〈0, f, c〉 ∈ b (e)1f Γ c ∈ a ∧ e 1 a = b

e Γ (∃x ∈ a)φ(x) iff ∃〈0, (e)0, b〉 ∈ a (e)1 Γ φ(b)

e Γ (∀x ∈ a)φ(x) iff ∀〈0, f, b〉 ∈ a e.f Γ φ(b) and e 1 (∀x ∈ a)φ(x)

Axioms of Equality

Proposition 8.4.3. One can construct realizers ir, is, it, i0, i1 such that

1. ir Γ (∀x)x = x

2. is Γ (∀x, y)x = y → y = x

3. it Γ (∀x, y, z)(x = y → (y = z → x = z))

4. i0 Γ (∀x, y, z)(x = y → (y ∈ z → x ∈ z))

5. i1 Γ (∀x, y, z)(x = y → (z ∈ x→ z ∈ y))

Furthermore, for each formula (without parameters), φ(x, z1, . . . , zn), there is iφ such

that

iφ Γ x = y → (φ(x, z1, . . . , zn)→ φ(y, z1, . . . , zn))
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Proof. We take these realizers from chapter 4 and check that they still work here.

Recall that ir is defined such that

((ir)0f)0 = f

((ir)0f)1 = ir

((ir)1f)0 = f

((ir)1f)1 = ir

In order to show ir Γ (∀x)x = x, by proposition 3.2.4, what we need to show is

1. for every a ∈ V Γ
0 (A), ir Γ a = a

2. for every a ∈ V1(A), ir 1 a = a

However note that the second of these conditions is basically the same as the statement

ir  a = a in V (A). Hence we only have to check the first condition.

Furthermore, since we already know that for every a ∈ V Γ
0 (A), ir 1 a = a, all we have

to check is the following:

∀〈0, f, b〉 ∈ a (ir)0 Γ b ∈ a

and

∀〈0, f, b〉 ∈ a (ir)1 Γ b ∈ a

We show by induction that these conditions hold for every a ∈ V Γ
0 (A).

Suppose that 〈0, f, b〉 ∈ a. Then since this has been labelled with 0, we know that b is

also partly symmetric. Also b is of strictly lower rank, so we can apply induction here

and the above arguments to get

ir Γ b = b
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However, recall that we defined ir using the fixed point theorem so that for all f ,

((ir)0f)0 = f

((ir)0f)1 = ir

(and the same equations for (ir)1).

Hence ir Γ a = a as required.

The proof that is works as required from the proof of proposition 4.3.3 still holds here.

it, i0 and i1 are also the same as in chapter 4 and the proofs that they are as required can

be similarly adapted to this context.

The iφ are constructed by induction on the construction of φ. We will explicitly show

how to do this for unbounded universal quantifiers and implication since these contain

the main ideas for the rest of the induction.

We first show how to construct iφ→ψ.

Suppose that a, b, c ∈ V Γ
0 (A), e Γ a = b and f Γ φ(a, c)→ ψ(a, c). Suppose further

that

g Γ φ(b, c)

Then

iφ(ise)g Γ φ(a, c)

and so

f(iφ(ise)g) Γ ψ(a, c)

and finally

iψe(f(iφ(ise)g)) Γ ψ(b, c)

Hence we can apply similar reasoning for 1 and for a, b, c ∈ V1(A) and use proposition

3.2.4 to show that we can take iφ→ψ to be

iφ→ψ := (λx, y, z).iψx(y(iφ(isx)z))
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For unbounded universal quantifiers, we show that we can take i(∀z)φ(x,z) := iφ(x,z).

Suppose that

iφ(x,z) Γ (∀z)(x = y → (φ(x, z)→ φ(y, z)))

and suppose that for a, b ∈ V Γ
0 (A), e Γ a = b and

f Γ (∀z)φ(a, z)

Then for all c ∈ V Γ
0 (A),

f Γ φ(a, c)

and so

iφ(x,z)ef Γ φ(b, c)

One can check the corresponding case for c ∈ V1(A) to get

iφ(x,z)ef Γ (∀z)φ(b, z)

as required.

Proposition 8.4.4. Bounded and unbounded quantifiers agree. That is, we can find

realizers for the following statements.

1. (∀x ∈ a)φ(x)→ (∀x)(x ∈ a→ φ(x))

2. (∀x)(x ∈ a→ φ(x))→ (∀x ∈ a)φ(x)

3. (∃x ∈ a)φ→ (∃x)(x ∈ a ∧ φ(x))

4. (∃x)(x ∈ a ∧ φ(x))→ (∃x ∈ a)φ(x)

Proof. The proof of proposition 4.3.4 can be adapted using proposition 3.2.4.

The following helps illustrate the relation between realizability in V Γ
0 (A) and V (A).

Definition 8.4.5. We say that a ∈ V Γ
0 (A) is (completely) symmetric if every element of

a is of the form

〈0, e, b〉

where b is completely symmetric. (This is an inductive definition).
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Proposition 8.4.6. Suppose that φ is a bounded formula, all of whose parameters are

completely symmetric. Then

e Γ φ iff e 1 φ

Proof. When all parameters are completely symmetric the two definitions of realizability

agree for everything except unbounded quantifiers.

We now move on to the proof of soundness for the axioms of set theory.

Theorem 8.4.7. V Γ
0 (A) satisfies the axioms of CZF.

We first deal with what are sometimes referred to as “set existence axioms.” That is,

axioms of the form

(∀z1, . . . , zn)(∀x)(∃y)φ(x, y, z1, . . . , zn)

where the free variables of φ are amongst x, y, z1, . . . , zn. For these axioms we can apply

proposition 3.2.4 to show that it is sufficient to find e such that for every a, c1, . . . , cn ∈

V1(A), there is b ∈ V1(A) such that

e 1 φ(a, b, c1, . . . , cn)

and for every a, c1, . . . , cn ∈ V Γ
0 (A) there is b ∈ V Γ

0 (A) such that

e Γ φ(a, b, c1, . . . , cn)

However, the first of these statements follows from the soundness theorem for V (A).

Hence we only have to check the second of these conditions.

For infinity, union, strong collection, pairing, and bounded separation we simply follow

the soundness proof in chapter 6 and note that any sets we construct for witnesses of

the set existence axioms are still witnesses in V1(A). For example, consider the case of

binary intersection.



8 FAILURE OF THE EXISTENCE PROPERTY FOR CZF 142

Binary Intersection Given sets A and B in V Γ
0 (A), form the set C as

C := {〈0,pef, a〉 | 〈0, e, a〉 ∈ A, f Γ a ∈ B}∪

{〈1,pef, a〉 | 〈n, e, a〉 ∈ A, f 1 a ∈ B}

Note that if α ∈ StabG(A) ∩ StabG(B), 〈0, e, a〉 ∈ A and f Γ a ∈ B, then we also

have that 〈0, α(e), α(a)〉 ∈ A and α(f) Γ α(a) ∈ B. Hence if c = 〈0,pef, a〉 ∈ C

then α(c) ∈ C.

We can also show the analogous result for when c = 〈1,pef, a〉 ∈ C.

Hence we already have that StabG(C) ∈ Γ, and so C ∈ V Γ
0 (A). Hence we can use the

usual realizer for binary intersection.

Union We assume that we are given a set A ∈ V Γ
0 (A) and construct a set to show the

union axiom.

Let

Un(a) := {〈0,pef, b〉 | 〈0, e, c〉 ∈ A, 〈0, f, b〉 ∈ c}∪

{〈1,pef, b〉 | 〈s, e, c〉 ∈ A, 〈s′, f, b〉 ∈ c}

As in chapter 6, this is already a symmetric set so Un(a) ∈ V Γ
0 (A). Hence we can use

the same realizer as in the proof of theorem 4.3.6 to show the soundness of union.

Pair Given a, b ∈ V Γ
0 (A), consider the set

Pair(a, b) := {〈0, 0, a〉, 〈0, 1, b〉}

We can easily see that this is an element of V Γ
0 (A) and that the usual realizer still works.

Infinity We check that the proof in chapter 4 still holds here. We use the same ω̄ as in

section 4.4. We write⊥v for the formula (∀x ∈ v)⊥, and write SC(x, y) for y = x∪{x}

(expressed as a bounded formula).
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Note first that we can apply proposition 8.4.6 and theorem 4.3.6 to reduce the problem

to finding a realizer for

(∀v)((⊥v ∨ (∃u ∈ ω̄)SC(u, v))→ v ∈ ω̄)

Since we can clearly find a realizer to show that the empty set is in ω̄, this is reduced to

finding a realizer for

(∀v)(∃u ∈ ω̄)SC(u, v)→ v ∈ ω̄)

Hence we assume that there is a ∈ V Γ
0 (A) with e Γ (∃u ∈ ω̄)SC(u, a). So there must

be some n such that (e)0 = n and (e)1 Γ SC(n, a).

One can clearly find a realizer for SC(n, n+ 1) and hence a realizer, using the soundness

of extensionality (once we have checked this) for SC(u, v) ∧ SC(u, v′) → v = v′. We

can use these to construct a realizer for a ∈ ω, as required.

Strong Collection Assume

e Γ (∀x ∈ A)(∃y)φ(x, y)

where φ is a formula with all parameters partly symmetric.

By strong collection in the background universe, we can find a C0 such that whenever

〈0, f, a〉 ∈ A, there is 〈0, f, c〉 ∈ C0 such that c is partly symmetric and e.f Γ φ(a, c),

and such that every element of C0 is of this form

Similarly, there is a C1, such that whenever 〈s, f, a〉 ∈ A, there is 〈1,0, c〉 ∈ C1 such

that e.f 1 φ(a, c) and such that every element of C1 is of this form.

Let C = C0 ∪ C1, and let

H := StabG(A) ∩
n⋂
i=1

StabG(di)

where the parameters in φ are amongst d1, . . . , dn.

Then as in the proof of theorem 6.3.1 we can use this to prove the soundness of strong

collection.



8 FAILURE OF THE EXISTENCE PROPERTY FOR CZF 144

Subset Collection We basically follow the proof in chapter 6.

Suppose that A,B ∈ V Γ
0 (A), and φ is a formula with parameters in V Γ

0 (A). Then we

can form B0, B1 and B̃ as follows

B0 = {〈0,pgh, b〉 | (∃k)〈0, k, b〉 ∈ B, (∃a)〈0, g, a〉 ∈ A, h ∈ A}

B1 = {〈1,pgh, b〉 | (∃k)〈m, k, b〉 ∈ B, (∃a)〈m, g, a〉 ∈ A, h ∈ A}

B̃ = B0 ∪B1

Then, analogously to chapter 6, we form C0 and C1 such that whenever f ∈ A and

u ∈ V Γ
0 (A) and

f Γ (∀x ∈ A)(∃y ∈ B)φ(x, y, u)

we have that there is some c ∈ C0 such that for every 〈0, g, a〉 ∈ A there is b such that

〈0,pg(fg)1, b〉 ∈ c, and whenever 〈1, g, a〉 ∈ A, there is b such that 〈1,pg(fg)1, b〉 ∈ c

and such that every element of c is of one of these forms.

C1 is defined such that whenever f ∈ A and u ∈ V1(A) are such that

f 1 (∀x ∈ A)(∃y ∈ B)φ(x, y, u)

we have that there is some c ∈ C1 such that for every 〈n, g, a〉 ∈ A there is b,m such

that 〈m,pg(fg)1, b〉 ∈ c, and such that every element of c is of this form.

Then define,

C ′0 := {ClH(c) | c ∈ C ′, H ∈ S, c ⊆ V Γ
0 (A)}

(where S is a generating set for Γ, as in chapter 6)

Finally let

C := ClG({〈0, 0, c〉 | c ∈ C ′0} ∪ {〈1, 0, c〉 | c ∈ C1})

The same reasoning as before can now be used to show that this is a witness for subset

collection.

After checking the set existence axioms, it only remains to check extensionality and

∈-induction.
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Extensionality One can check that the realizers for the formula

((∀x ∈ a)x ∈ b) ∧ ((∀x ∈ b)x ∈ a)

in fact are already realizers for a = b, so we can use the identity to show extensionality

(in this form).

∈-Induction Suppose that

e Γ (∀y)((∀x ∈ y)φ(x)→ φ(y))

Let e′ = (λx, y).e.x and let f be given by the fixed point theorem so that for all g

f.g ' e′.f.g

Note that we know

e 1 (∀y)((∀x ∈ y)φ(x)→ φ(y))

and so by the usual proof we have that for all a ∈ V1(A), and all g ∈ A, f.g 1 φ(a).

We claim that for all a ∈ V Γ
0 (A), and all g ∈ A, f.g ↓ and f.g Γ φ(a).

So suppose that a ∈ V Γ
0 (A). Then for every 〈0, g, b〉 ∈ a, we know by induction in the

background universe (since b must be partly symmetric and of strictly lower rank than

a) that f.g ↓ and f.g Γ φ(b). We also know from the above that f 1 (∀x ∈ a)φ(x).

Hence f Γ (∀x ∈ a)φ(x). Thus we have for any g ∈ A, e′fg ' ef (is defined and)

realizes φ(a). But e′fg ' fg and so f.g Γ φ(a) as required.

Remark 8.4.8. Note that when we proved the axiom of infinity we used the same stan-

dard representation ω as for V (A). Note further that if f ∈ A is such that for all n ∈ ω

there is m ∈ ω with fn = m, then the f from section 4.4 is completely symmetric

and hence we have the same standard representations of the natural numbers and Baire

space as we did before.
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8.5 Realizability at V ip
0 (A)

For this section we will assume that A is a non-trivial pca rather than something more

general.

We say that a ∈ V (A) is injectively presented if for any 〈e, b〉, 〈e′, b′〉 ∈ a, if e = e′ then

b = b′.

Define V ip
0 (A) inductively as follows

V ip
0 (A)α+1 = {X ⊆ 2× |A| × V ip

0 (A)α | X◦ is injectively presented}

V ip
0 (A)λ =

⋃
β<λ

V ip
0 (A)β

V ip
0 (A) =

⋃
α∈On

V ip
0 (A)α

We define realizability at V ip
0 (A) as follows. We write 1 for realizability at V (A).

e ip a ∈ b iff (∃〈n, (e)0, c〉 ∈ b)(e)1 ip a = c

e ip a = b iff (∀〈n, f, c〉 ∈ a)(e)0.f ip c ∈ b ∧

(∀〈n, f, c〉 ∈ b)(e)1f ip c ∈ a

e ip (∃x ∈ a)φ(x) iff (∃〈n, (e)0, b〉 ∈ a)(e)1 ip φ(b)

e ip (∀x ∈ a)φ(x) iff (∀〈n, f, b〉 ∈ a)e.f ip φ(b)

We write V ip
0 (A) |= φ to mean that there is some e ∈ A such that e ip φ.

Remark 8.5.1. Note that as at V1(A) and unlike at V Γ
0 (A), we completely ignore the

extra label from 2. Hence, realizability for bounded formulas is identical in V ip
0 (A) and

V (A). We also know that we can work with a◦ for a ∈ V1(A) instead of a itself. For

convenience we will often do this.
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Proposition 8.5.2. V ip
0 (A) satisfies the axioms of equality.

Proof. This follows by exactly the same proof as for V Γ
0 (A).

It remains to check that when we show the soundness of the axioms of CZF, we can

assume the sets we construct are injectively presented. Since we will require choice in

the background universe for this proof, we work over a background universe of ZFC.

Theorem 8.5.3. V ip
0 (A) is sound with respect to the axioms of CZF.

Extensionality This is the same as for V (A).

Bounded Separation Given A ∈ V ip
0 (A) and a bounded formula, φ, consider the set

S = {〈pef, a〉 | 〈e, a〉 ∈ A, f ip φ(a)}

Note that this is injectively presented, since A is, and since realizability for bounded

formulas is identical in V ip
0 (A) and V (A), we can see that this can be used to show the

soundness of bounded separation.

Pair Given a, b ∈ V (A), consider

P = {〈0, a〉, 〈1, b〉}

This is clearly injectively presented, and we can easily use this to show the soundness of

pair.

Union Suppose we have been given a ∈ V ip
0 (A). We want to find an injectively pre-

sented set that we can use to show the union axiom. Recall from chapter 4

Un(a) = {〈pef, c〉 | 〈f, b〉 ∈ a, 〈e, c〉 ∈ b}

Then this is already injectively presented, so we can use the same proof as for theorem

4.3.6 to show the soundness of union.
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Infinity We note that the ω given in section 4.4 is injectively presented, and since no

other sets need to be constructed in the proof of infinity, this means we can use the same

proof as usual here.

Strong Collection Suppose that

e ip (∀x ∈ A)(∃y)φ(x, y)

For each 〈f, a〉 ∈ A, we can assume by choice in the background universe that we have

chosen a cf ∈ V ip
0 (A) such that e.f ip φ(a, cf ) (and hence also e.f 1 φ(a, cf )).

Let

C = {〈f, cf〉 | 〈f, a〉 ∈ A}

This is clearly injectively presented (since A is).

Note that

(λx).px(e.x) ip (∀x ∈ A)(∃y ∈ C)φ(x, y)

and in fact we can use exactly the same realizer again in

(λx).px(e.x) ip (∀y ∈ C)(∃x ∈ A)φ(x, y)

(since every element of C is of the form 〈f, cf〉 where 〈f, x〉 ∈ A and e.f ip φ(x, cf )).

So we get soundness for strong collection.

Subset Collection Suppose we are given sets A,B ∈ V ip
0 (A). Suppose further that

e ∈ A is such that for all 〈f, a〉 ∈ A, e.f ↓ and there is 〈e.f, b〉 ∈ B for some b. In this

case we can define

e := {〈f, b〉 | ∃a〈f, a〉 ∈ A, 〈e.f, b〉 ∈ B}

(Clearly e ∈ V ip
0 (A)).

Now let

D := {〈e, e〉 | e ∈ A, e is defined}
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Clearly D ∈ V ip
0 (A). We shall show that we can use D to show the soundness of subset

collection.

Suppose that u ∈ V (A) is such that

e 1 (∀x ∈ A)(∃y ∈ B)φ(x, y, u)

Let

e′ := (λx).(ex)0

Note that for every 〈f, a〉 ∈ A, we have e′.f ↓ and there is (a unique) bwith 〈e′.f, b〉 ∈ B,

and so 〈e′, e′〉 ∈ D. Furthermore (e.f)1 1 φ(a, b, u), and so we can find a realizer for

(∀x ∈ A)(∃y ∈ e′)φ(x, y, u) ∧ (∀y ∈ e′)(∃x ∈ A)φ(x, y, u)

We can do exactly same if

e ip (∀x ∈ A)(∃y ∈ B)φ(x, y, u)

Hence this does give a proof of the soundness of subset collection.

∈-Induction The same proof as for V Γ
0 (A) still holds here.

8.6 The pca T

8.6.1 Definition

We will define a term model based on the term model of inside first reduction given in

definition 2.5.17.

Recall that this is defined using CL(X). We set X to be the disjoint union of two sets of

constants, ξi for i ∈ ω, and ζF for bijections F : ω>0 → ω>0.
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Recall that CL(X) comes equipped with the following reduction relations.

sxyz → xz(yz)

kxy → x

In addition to these, we add a new reduction rule. Below, let n be n encoded using s and

k in the usual way. We define ζ-reduction as follows:

ζF t→ n

where t is a closed term and n is either maximal such that n = F (m) where ξm occurs

in t or n = 0 and no ξm occurs in t.

Note that this term rewriting system is ambiguous. That is, there are terms that can

be reduced in two incompatible ways. For example, the term ζ(λx).x(kkξ1) can reduce

either to 1 or to 0 depending on whether the subterm kkξ1 is reduced before or after

ζ-reduction. However, we still have a notion of normal form (when no reduction rule

can be applied to a term) and leftmost innermost reduction, as defined below.

Definition 8.6.1. We define a sequence of partial operators, REDn for each n as follows:

For n = 0, define RED0 as follows:

1. if t is a normal form, RED0(t) = t

2. for t = krs where r and s are normal forms, RED0(krs) = r

3. for t = ζF r where r is a normal form, RED0(ζF r) = n where n is maximal such

that ξF−1(n) occurs in r or 0 if no ξi occurs in r

If REDn has been already been defined, then we define REDn+1 as follows:

1. if REDn(t) ↓, then REDn+1(t) = REDn(t)
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2. for t = srsu, where r, s, and u are normal forms,

REDn+1(srsu) ' REDn(REDn(ru) REDn(su))

3. if t = rs and neither of previous cases apply, then

REDn+1(rs) ' REDn(REDn(r) REDn(s))

We then define RED as

RED =
⋃
n∈ω

REDn

Note that if RED(t) is defined, then it is a normal form.

We now define our pca, T in the same way as in chapter 2, that is

Definition 8.6.2. Let T be the set of normal forms of C together with the following

application:

s.t := RED(s.t)

(undefined if RED(s.t) is undefined)

As in chapter 2 we get the following propositions.

Proposition 8.6.3. Suppose that t is a closed term over T (in the sense of definition

2.1.5) and write t∗ for the corresponding term (in the sense of definition 2.5.9). Then

RED(t∗) is defined if and only if t denotes, and in this case we have

RED(t∗) = t

Proof. The proof of proposition 2.5.18 still holds here.

Proposition 8.6.4. T is a pca.

Proof. The proof of proposition 2.5.19 still holds here.
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8.6.2 Preservation of Atoms

The non trivial structure of V Γ
0 (T ) will rely on the ξi, and the rich supply of automor-

phisms arising from permutations of them. We will want to ensure therefore that under

suitable conditions the atoms aren’t eliminated by the realizability structure. In this sec-

tion, we will aim towards a lemma that will enable us to show this.

Definition 8.6.5. For any pca, A, one may consider the following classes of elements

1. recall from definition 4.4.1 that f ∈ A is type 1 if for every n ∈ ω, f.n ↓, and

there is some m ∈ ω such that f.n = m

2. e ∈ A is type 2 if for every type 1 f , e.f ↓ and e.f is type 1

3. e ∈ A is a type 2 identity if it is type 2 and for all f type 1 and for all n ∈ ω,

efn = fn

We will now show that being able to decide whether a term is defined or not is equivalent

to the halting problem.

Proposition 8.6.6. Suppose that t(x) = t1(x)t2(x), l ∈ ω, and r is a normal form. If

REDl((λx).t(x)r) ↓, then l > 0 and REDl−1(t(r)) ↓.

Proof. Note that from the definition of lambda terms over a pca (in the proof of propo-

sition 2.2.3) we know that

(λx).t(x) := s((λx).t1(x))((λx).t2(x))

Note firstly that

(λx).t(x)r = s(λx).t1(x)(λx).t2(x)r

and hence we can only have REDl((λx).t(x)r) ↓ for l > 0. Furthermore,

REDl(s(λx).t1(x)(λx).t2(x)r) '

REDl−1(REDl−1((λx).t1(x)r) REDl−1((λx).t2(x)r))
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Since we are assuming that REDl((λx).t(x)r) ↓, we know that REDl−1((λx).t1(x)r) ↓

and REDl−1((λx).t2(x)r) ↓, and hence

REDl−1(REDl−1((λx).t1(x)r) REDl−1((λx).t2(x)r)) = REDl−1(t1(r)t2(r))

= REDl−1(t(r))

and in particular REDl−1(t(r)) ↓.

Proposition 8.6.7. For any m,n ∈ ω, there is a closed normal form tm and a normal

form t′m(x) with free variable x such that for all r ∈ T

1. RED(tmr) ↓ if and only if the mth Turing machine halts on input m, and if this

occurs RED(tmr) = I (I := skk)

2. RED(t′m(ζF )r) ↓ if and only if the mth Turing machine halts on input m, and if

this occurs RED(tm(ζF )r) = F (n)

3. t′m contains ξn

4. tm contains no ξi and t′m contains only ξi for i = n

Proof. By representability of computable functions in pcas (see eg [39] or [5]), one can

construct um such that for every k ∈ ω, and every v ∈ T

umk =

kI if the mth Turing machine halts by stage k

(λz).(zk + 1) if the mth Turing machine does not halt by stage k

Then, following the construction in the fixed point theorem,

w := (λx).((λy).umy(xx))

v := ww

= (λy).umy(ww)
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Then if the mth Turing machine halts at stage k,

v0 ' um0(ww)

' um0v

' v1

...

' vk

' umk(ww)

' (kI)(ww)

' I

In particular v0 ↓.

Now suppose that the mth Turing machine never halts. We show by induction on l that

for all l ∈ ω and for all k ∈ ω,

REDl(vk) ↑

Assume that for all k ∈ ω and for all l′ < l the statement above holds and assume for a

contradiction that REDl(vk) ↓. Note that

REDl(vk) = REDl(((λy).umy(ww))k)

and so by proposition 8.6.6, we know in particular that REDl−1(umk(ww)) ↓. But in

this case

REDl−1(umk(ww)) = REDl−2(REDl−2(umk) REDl−2(ww))

= REDl−2((λz).(zk + 1)v)

= REDl−3(vk + 1)

and so in particular REDl−3(vk + 1) ↓ giving a contradiction as required.

Finally, let tm = s(kv)(k0). Then, for all r, tmr ' v0, by the basic properties of s and

k



8 FAILURE OF THE EXISTENCE PROPERTY FOR CZF 155

For parts 2 and 3, let tm be as above and let t′m(x) = s(stm(kx))(kξn) and note that the

result follows from the basic properties of s and k

Lemma 8.6.8 (Preservation of Atoms). Let e be a type 2 identity in T . Then for any n,

there is some type 1 f in T such that RED(e.f) contains the atom ξn as a subterm and

furthermore, only contains ξi such that i = n.

Proof. We assume that this is not the case and derive a contradiction.

We will define a (computable) family fm(x) of normal forms with one free variable such

that for each F , fm(ζF ) is type 1 in T .

Let gm ∈ T be such that for all l ∈ ω, gml = k(k0) if the mth Turing machine with

input m has not halted by stage l and gml = I if the mth Turing machine has halted

by stage l. We can do this using the representability of primitive recursive functions in

pcas..

Then let t′m be as in proposition 8.6.7. Define

fm(x) := s(sgm(kt′m(x)))I

Note that this is in normal form, and that if the mth Turing machine has not halted by

stage l then for any ζF

RED(fm(ζF )l) ' RED(RED((sgm(kt′m(ζF )))l)l)

' RED(RED(RED(gml)t
′
m(ζF ))l)

' RED(RED(k(k0)t′m(ζF ))l)

' RED(k0l)

' 0

In particular, see that fm(ζF )l ↓ even if the mth Turing machine never halts on input m.
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If the mth Turing machine on input m has halted by stage l, then

RED(fm(ζF )l) ' RED(RED((sgm(kt′m(ζF )))l)l)

' RED(RED(RED(gml)t
′
m(ζF ))l)

' RED(RED(It′m(ζF ))l)

' RED(t′m(ζF )l)

' F (n)

Hence for any m ∈ ω and any ζF , fm(ζF ) is type 1 in the sense we defined earlier.

We therefore know that e.fm(ζF ) ' RED(e.fm(ζF )) ↓ and by hypothesis RED(e.f)

cannot contain ξn. For convenience, in the below we will assume that F is chosen such

that ζF does not occur anywhere in e.

Note that we can carry out an algorithm to find RED(e.fm(ζF )) from m. (Only finitely

many ξi’s and ζG’s occur in e and fm(ζF ), so we can give these terms Gödel numbers

and the ζ-rule does not cause a problem here because we only need to know G(k) where

ζG occurs in e or G = F and ξk occurs in e or k = n and this is only finitely much

information).

Furthermore, note that when we carry out this algorithm we can check whether or not we

ever need to evaluate RED(t′m(ζF )r) for some r. If we did need to evaluate this, then in

particular RED(t′m(ζF )r) ↓ and so themth Turing machine must halt on inputm. On the

other hand, if we did not need to evaluate RED(t′m(ζF )r), then ζF was never used in the

ζ-rule because it only ever occurs as a subterm of the normal form t′m(ζF ). Furthermore,

by hypothesis t′m(ζF ) cannot occur as a subterm of RED(e.fm(ζF )), because otherwise

e.fm(ζF ) would contain ξn.

Hence if we choose F ′ such that F ′(n) 6= F (n) then

RED(e.fm(ζF )) = RED(e.fm(ζF ′))

But note that this means fm(ζF ) and fm(ζF ′) must have the same value on every l. This
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can only happen if they are both identically zero and hence themth Turing machine does

not halt on input m.

Therefore we could use such an algorithm to solve the halting problem and we derive

our contradiction.

8.6.3 Automorphisms of T

Suppose that π : ω>0 → ω>0 is a permutation. Then π induces an automorphism α :

T → T as follows.

1. α(ξn) = ξπ(n)

2. α(ζF ) = ζF◦π−1

3. α(s) = s

4. α(k) = k

5. α(s.t) = α(s)α(t)

Note that we have chosen the action of α on the ζF so that it is compatible with the ζ-rule

and the action of α on the ξn. α is clearly therefore an automorphism of T .

8.7 A Useful Lemma

Before we move onto the proof itself, we prove a lemma that is true in general for any

pca A. Informally, what this says is the property of being injectively presented can be

inherited “up to realizability” across sets that are realizably equal.

Lemma 8.7.1. There is some e ∈ A such that for any a, b ∈ V (A), if f ∈ A is such that

f  a = b and a is injectively presented, and if 〈g, c〉, 〈g, c′〉 ∈ b, then

efg  c = c′
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Proof. Since f  a = b, there must be 〈((f)1g)0, d〉, 〈((f)1g)0, d
′〉 ∈ a such that

((f)1g)1  c = d

((f)1g)1  c′ = d′

Since a is injectively presented, we know in fact that d = d′ and so

it((f)1g)1(is((f)1g)1)  c = c′

Hence we can take

e := (λx, y).it((x)1y)1(is((x)1y)1)

8.8 Failure of the Existence Property

We will show that the existence property fails for CZF in the following instance.

Theorem 8.8.1. There is no formula with one free variable χ(x) such that

CZF ` (∃!x)χ(x)

and

CZF ` χ(x)→ x ⊆ mv(NN,N) ∧ (∀R ∈ mv(NN,N))(∃S ∈ x)S ⊆ R

This will immediately give the following corollary.

Corollary 8.8.2. CZF does not have wEP.

Proof. We know that

CZF ` (∃x)(x ⊆ mv(NN,N) ∧ (∀R ∈ mv(NN,N))(∃S ∈ x)S ⊆ R)
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Suppose that there is some ψ(x) such that

CZF ` (∃!x)ψ(x)

CZF ` (∀x)ψ(x)→ (∃z)z ∈ x

CZF ` (∀x)ψ(x)→ (∀z ∈ x)

(z ⊆ mv(NN,N) ∧ (∀R ∈ mv(NN,N))(∃S ∈ z)S ⊆ R)

Then by taking χ(w) to be ∀xψ(x)→ w =
⋃
x, we would get

CZF ` (∃!w)χ(w)

and

CZF ` χ(w)→ w ⊆ mv(NN,N) ∧ (∀R ∈ mv(NN,N))(∃S ∈ w)S ⊆ R

contradicting the theorem.

Proof of theorem 8.8.1 Assume that there is such a χ(x).

Let T be the pca from section 8.6 and let G be the group of all automorphisms obtained

from permutations of ω, as in section 8.6.3. Let Γ be the normal filter generated by

{StabG(ξn) | n ∈ ω}. Hence if G acts on some class X , then for x ∈ X , StabG(x) ∈ Γ

means that x “has finite support relative to the ξn.”

By the soundness theorems, there must be C ip ∈ V ip
0 (T ) and CΓ ∈ V Γ

0 (T ) such that

V ip
0 (T ) |= χ(C ip)

V Γ
0 (T ) |= χ(CΓ)

Hence we must have that

V1(T ) |= χ(C ip) ∧ χ(CΓ)

and so

V1(T ) |= C ip = CΓ
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This allows us to apply lemma 8.7.1 and deduce that there is some e0 such that for any

〈f, c〉, 〈f, c′〉 ∈ CΓ,

e0.f 1 c = c′

In fact this is the only point where we need C ip and we can now derive a contradiction

by examining CΓ carefully.

Recall that we can assume that the elements of NN are of the form 〈f, f〉 as described in

section 4.4.

Write ζ1 for ζ(λx).x and for each N , construct RN ∈ V Γ
0 (T ),

RN := {〈0, f, 〈f, n〉〉 | f is type 1, n ≤ N, n = ζ1f} ∪

{〈0, f, 〈f, n〉〉 | f is type 1, n > N, ζ1f > N}

Lemma 8.8.3. We have constructed these RN so that the following hold:

1. RN ∈ V Γ
0 (T ). In fact

⋂N
i=1 StabG(ξi) ⊆ StabG(RN).

2. There is some e1 ∈ T such that for all N , e1 Γ RN ∈ mv(NN,N).

3. Suppose that 〈f, a〉 ∈ RN and ξi occurs in f only if i ≤ N . Then a = 〈f, n〉 where

n = ζ1f (and n ≤ N ).

Proof. For 1, note that each set in the binary union in the definition of RN is preserved

by elements of
⋂N
i=1 StabG(ξi).

For 2, note that each RN can be “represented” by ζ1. This can clearly be used to produce

a realizer that these are multi valued functions.

Part 3 is clear from the definition.

We will aim for our contradiction by first showing a lemma stating that any automor-

phism satisfying certain properties has to be the identity. This will use the key lemma

from section 8.6.2 as well as the basic properties of RN . We will then construct a non
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trivial automorphism satisfying these conditions. In this lemma we work over V (T ) and

RN in fact refers to R◦N .

Lemma 8.8.4. Suppose that a ∈ V (T ), N < N ′ ∈ N, and e, f ∈ T are such that

1. For any ξi occurring in e or f , i ≤ N

2.
⋂N
i=1 StabG(ξi) ⊆ StabG(a)

3. e 1 (∀x ∈ a)x ∈ RN ′

4. f 1 (∀x ∈ NN)(∃y ∈ a)(∃z ∈ N)y = 〈x, z〉

Then, whenever α ∈ G fixes ξi for i ≤ N and i > N ′, α must also fix ξi for N < i ≤ N ′

and hence α must be the identity.

Proof. We first check that (λx).(e(fx)0)0 is a type 2 identity.

Let g be type 1. Then 〈g, g〉 ∈ NN. Therefore there is b such that 〈(fg)0, b〉 ∈ a and

(fg)1 1 (∃z ∈ N)b = 〈g, z〉.

Let h := (e(fg)0)0. Then we know that there is some c such that 〈h, c〉 ∈ RN ′ and

(e(fg)0)1  b = c. By the basic properties of RN ′ we know that c must be of the form

〈h,m〉 for some m ∈ N. From above we know that V (T ) |= (∃z ∈ ω)b = 〈g, z〉 and

V (T ) |= b = 〈h,m〉, so we deduce that V (T ) |= g = h. Hence g and h must have the

same graphs as type 1 elements, and so (λx).(e(fx)0)0 is a type 2 identity as required.

Now let α ∈ G fix ξi for i ≤ N and i > N ′. Suppose for a contradiction that there is

some n with N < n < N ′ such that α(ξn) 6= ξn.

By applying lemma 8.6.8 we can find a first order g such that g only contains ξi for

i = n and such that ξn does occur in (e(fg)0)0. Let b, h, and c be as above, but for this

particular g.

Since e and f only contain ξi for i ≤ N , we know that h can only contain ξi for i ≤ N

or i = n. Since we have guaranteed that h does contain ξn, we know that ζ1h = n. In
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particular n ≤ N ′, so we know from the definition of RN ′ that c must be of the form

〈h, n〉.

Since α fixes ξi for i ≤ N we know from our assumptions that α also fixes a. There-

fore, since 〈(fg)0, b〉 ∈ a we must also have 〈α((fg)0, α(b)〉 ∈ a. Hence if h′ :=

(eα((fg)0))0 we know that there is some c′ with 〈h′, c′〉 ∈ RN ′ and V (T ) |= α(b) = c′.

Since α fixes ξi for i ≤ N we know that ξi can only occur in e and α(f) for i ≤ N .

Since α fixes ξi for i > N ′, we know that α(ξn) must be amongst ξi for i ≤ N ′. Hence

h′ only contains ξi for i ≤ N ′. Furthermore neither α(f) nor α(g) contains ξn and from

the assumption that α(ξn) 6= ξn we also know that ξn does not occur in α(g). Hence

ζ1h
′ = m for some m ≤ N ′ with m 6= n. Again from the definition of RN ′ , we know

therefore that c′ is of the form 〈h′,m〉.

But then since V (T ) |= b = 〈h, n〉, we have that V (T ) |= α(b) = 〈α(h), α(n)〉.

Together with V (T ) |= α(b) = 〈h′,m〉 this gives V (T ) |= α(n) = m. In fact α(n) = n,

so V (T ) |= n = m. But this is a contradiction since m 6= n.

Since we know V Γ
0 (T ) |= (∀x ∈ mv(NN,N))(∃y ∈ C)(y ⊆ x ∧ y ∈ mv(NN,N)), there

must be f, e2, e3 ∈ T and cn such that for all n,

〈0, f, cn〉 ∈ C

e2 Γ (∀x ∈ cn)(x ∈ Rn)

e3 Γ (∀x ∈ NN)(∃y ∈ cn)(∃z ∈ N)y = 〈x, z〉

In particular we know that for all n, StabG(cn) ∈ Γ and hence by proposition 8.4.2

StabG(c◦n) ∈ Γ. From now on we will work entirely over V (T ). When we write Rn and

cn we will in fact mean R◦n and c◦n respectively.

Recall that we chose e0 so that for all m and n,

e0f 1 cm = cn
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and so by substitution we can use e0f and e2 to construct e4 such that for all m and n

e4 1 (∀x ∈ cm)x ∈ Rn

Now let N be large enough such that the list ξ1, . . . , ξN includes any ξn in a support of

c0, or appearing in e0, e1e2, e3 or e4.

Let N ′ = N + 2.

Note that we have

e4 1 (∀x ∈ c0)x ∈ RN ′

Let α be the automorphism that swaps round ξN+1 and ξN+2, fixing everything else.

Then we know that α fixes ξi for i ≤ N (and hence also fixes c0 and any ξi occurring in

e3 and e4) and fixes ξi for i > N ′. However, clearly α does not fix ξN+1. Hence we can

finally get a contradiction by applying lemma 8.8.4.
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Chapter 9

Conclusion

The aim of this thesis was to use develop our understanding of constructive set theories

by developing and using realizability.

Towards this aim we developed symmetric realizability models and have shown that they

can be used to show the independence of various choice principles from constructive set

theory.

The main result in this thesis was the result in chapter 8 that CZF does not have EP, or

indeed even wEP. Since EP was described in the introduction as a property to be expected

from constructive formal theories based on the BHK interpretation, one might ask if its

failure indicates some weakness in CZF as a constructive theory. The short answer is

no: CZF is still a sound foundation for constructive mathematics.

What we showed essentially was that CZF asserts the existence of mathematical objects

that it does not know how to construct. However, CZF does have natural interpretations

in which these objects can be constructed. One example is Aczel’s original interpretation

of CZF into type theory in [1]. Here, the sets asserted in the fullness axiom are sets

of those multivalued relations that arise from elements of a particular exponential type.

Another (related) interpretation is Rathjen’s “formulas as classes” in [32], in which CZF

is interpreted into CZFE . In this example the full sets appear as exponentials in the

background universe. In [36] Rathjen and Tupailo showed using these techniques that
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CZF with a choice principle ΠΣ−AC has a form of the existence property.

We may conclude therefore that there are examples of reasonable constructive theories

where the existence property does not hold.
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